8,390 research outputs found

    Watching Michael Go

    Get PDF

    SCUBA Observations of NGC 1275

    Full text link
    Deep SCUBA observations of NGC 1275 at 450 micron and 850 micron along with the application of deconvolution algorithms have permitted us to separate the strong core emission in this galaxy from the fainter extended emission around it. The core has a steep spectral index and is likely due primarily to the AGN. The faint emission has a positive spectral index and is clearly due to extended dust in a patchy distribution out to a radius of ∼\sim 20 kpc from the nucleus. These observations have now revealed that a large quantity of dust, ∼\sim 6 ×\times 107^7 M⊙M_\odot, 2 orders of magnitude larger than that inferred from previous optical absorption measurements, exists in this galaxy. We estimate the temperature of this dust to be ∼\sim 20 K (using an emissivity index of β\beta = 1.3) and the gas/dust ratio to be 360. These values are typical of spiral galaxies. The dust emission correlates spatially with the hot X-ray emitting gas which may be due to collisional heating of broadly distributed dust by electrons. Since the destruction timescale is short, the dust cannot be replenished by stellar mass loss and must be externally supplied, either via the infalling galaxy or the cooling flow itself.Comment: 13 pages, 4 figures. Figure 4 is colou

    Modification of the biological intercept model to account for ontogenetic effects in laboratory-reared delta smelt (Hypomesus transpacificus)*

    Get PDF
    We investigated age, growth, and ontogenetic effects on the proportionality of otolith size to fish size in laboratory-reared delta smelt (Hypomesus transpacificus) from the San Francisco Bay estuary. Delta smelt larvae were reared from hatching in laboratory mesocosms for 100 days. Otolith increments from known-age fish were enumerated to validate that growth increments were deposited daily and to validate the age of fish at first ring formation. Delta smelt were found to lay down daily ring increments; however, the first increment did not form until six days after hatching. The relationship between otolith size and fish size was not biased by age or growth-rate effects but did exhibit an interruption in linear growth owing to an ontogenetic shift at the postflexon stage. To back-calculate the size-at-age of individual fish, we modified the biological intercept (BI) model to account for ontogenetic changes in the otolith-size−fish-size relationship and compared the results to the time-varying growth model, as well as the modified Fry model. We found the modified BI model estimated more accurately the size-at-age from hatching to 100 days after hatching. Before back-calculating size-at-age with existing models, we recommend a critical evaluation of the effects that age, growth, and ontogeny can have on the otolith-size−fish-size relation
    • …
    corecore