2,659 research outputs found
Coronal sources of the intrastream structure of the solar wind
Short time scale changes in the bulk speed were found not to coincide with X-ray transients near the sub-earth point nor with the number of X-ray bright points within a coronal hole and near the equator. The changes in bulk speed, it is shown, are associated with changes in light areas in a hole which may be associated with the opening or closing of magnetic field lines within the coronal hole. That there is a causal connection between these sudden changes (apperance or disappearance) in light area and sudden changes in the bulk speed of the solar wind is further evidenced by the spatial proximity on the Sun of these changing light regions to the source position of stream lines from Levine's model that connect into the same solar wind streams
Solar plasma experiment
Solar plasma experiment by Mariner IV space prob
Survey of the plasma electron environment of Jupiter: A view from Voyager
The plasma environment within Jupiter's bow shock is considered in terms of the in situ, calibrated electron plasma measurements made between 10 eV and 5.95 keV by the Voyager plasma science experiment (PLS). Measurements were analyzed and corrected for spacecraft potential variations; the data were reduced to nearly model independent macroscopic parameters of the local electron density and temperature. It is tentatively concluded that the radial temperature profile within the plasma sheet is caused by the intermixing of two different electron populations that probably have different temporal histories and spatial paths to their local observation. The cool plasma source of the plasma sheet and spikes is probably the Io plasma torus and arrives in the plasma sheet as a result of flux tube interchange motions or other generalized transport which can be accomplished without diverting the plasma from the centrifugal equator. The hot suprathermal populations in the plasma sheet have most recently come from the sparse, hot mid-latitude "bath" of electrons which were directly observed juxtaposed to the plasma sheet
Temporal HeartNet: Towards Human-Level Automatic Analysis of Fetal Cardiac Screening Video
We present an automatic method to describe clinically useful information
about scanning, and to guide image interpretation in ultrasound (US) videos of
the fetal heart. Our method is able to jointly predict the visibility, viewing
plane, location and orientation of the fetal heart at the frame level. The
contributions of the paper are three-fold: (i) a convolutional neural network
architecture is developed for a multi-task prediction, which is computed by
sliding a 3x3 window spatially through convolutional maps. (ii) an anchor
mechanism and Intersection over Union (IoU) loss are applied for improving
localization accuracy. (iii) a recurrent architecture is designed to
recursively compute regional convolutional features temporally over sequential
frames, allowing each prediction to be conditioned on the whole video. This
results in a spatial-temporal model that precisely describes detailed heart
parameters in challenging US videos. We report results on a real-world clinical
dataset, where our method achieves performance on par with expert annotations.Comment: To appear in MICCAI, 201
Solar wind data from the MIT plasma experiments on Pioneer 6 and Pioneer 7
Hourly averages are presented of solar wind proton parameters obtained from experiments on the Pioneer 6 and Pioneer 7 spacecraft during the period December 16, 1965 to August 1971. The number of data points available on a given day depends upon the spacecraft-earth distance, the telemetry bit rate, and the ground tracking time allotted to each spacecraft. Thus, the data obtained earlier in the life of each spacecraft are more complete. The solar wind parameters are given in the form of plots and listings. Trajectory information is also given along with a detailed description of the analysis procedures used to extract plasma parameters from the measured data
Temperature determination via STJ optical spectroscopy
ESA's Superconducting Tunnel Junction (STJ) optical photon-counting camera
(S-Cam2) incorporates an array of pixels with intrinsic energy sensitivity.
Using the spectral fitting technique common in X-ray astronomy, we fit black
bodies to nine stellar spectra, ranging from cool flare stars to hot white
dwarfs. The measured temperatures are consistent with literature values at the
expected level of accuracy based on the predicted gain stability of the
instrument. Having also demonstrated that systematic effects due to count rate
are likely to be small, we then proceed to apply the temperature determination
method to four cataclysmic variable (CV) binary systems. In three cases we
measure the temperature of the accretion stream, while in the fourth we measure
the temperature of the white dwarf. The results are discussed in the context of
existing CV results. We conclude by outlining the prospects for future versions
of S-Cam.Comment: 9 pages, 9 figures (11 files); uses aa.cls; accepted for publication
in A&
Variability of the Accretion Stream in the Eclipsing Polar EP Dra
We present the first high time resolution light curves for six eclipses of
the magnetic cataclysmic variable EP Dra, taken using the superconducting
tunnel junction imager S-Cam2. The system shows a varying eclipse profile
between consecutive eclipses over the two nights of observation. We attribute
the variable stream eclipse after accretion region ingress to a variation in
the amount and location of bright material in the accretion stream. This
material creates an accretion curtain as it is threaded by many field lines
along the accretion stream trajectory. We identify this as the cause of
absorption evident in the light curves when the system is in a high accretion
state. We do not see direct evidence in the light curves for an accretion spot
on the white dwarf; however, the variation of the stream brightness with the
brightness of the rapid decline in flux at eclipse ingress indicates the
presence of some form of accretion region. This accretion region is most likely
located at high colatitude on the white dwarf surface, forming an arc shape at
the foot points of the many field lines channeling the accretion curtain.Comment: Accepted for publication in MNRAS (7 pages
Evaluating Enzymatic Productivity—The Missing Link to Enzyme Utility
Kinetic productivity analysis is critical to the characterization of enzyme catalytic performance and capacity. However, productivity analysis has been largely overlooked in the published literature. Less than 0.01% of studies which report on enzyme characterization present productivity analysis, despite the fact that this is the only measurement method that provides a reliable indicator of potential commercial utility. Here, we argue that reporting productivity data involving native, modified, and immobilized enzymes under different reaction conditions will be of immense value in optimizing enzymatic processes, with a view to accelerating biotechnological applications. With the use of examples from wide‐ranging studies, we demonstrate that productivity is a measure of critical importance to the translational and commercial use of enzymes and processes that employ them. We conclude the review by suggesting steps to maximize the productivity of enzyme catalyzed reactions
- …