1,255 research outputs found

    Client Commitment to the Helping Relationship

    Get PDF

    Zero-Point cooling and low heating of trapped 111Cd+ ions

    Full text link
    We report on ground state laser cooling of single 111Cd+ ions confined in radio-frequency (Paul) traps. Heating rates of trapped ion motion are measured for two different trapping geometries and electrode materials, where no effort was made to shield the electrodes from the atomic Cd source. The low measured heating rates suggest that trapped 111Cd+ ions may be well-suited for experiments involving quantum control of atomic motion, including applications in quantum information science.Comment: 4 pages, 6 figures, Submitted to PR

    Ultracold molecules: vehicles to scalable quantum information processing

    Full text link
    We describe a novel scheme to implement scalable quantum information processing using Li-Cs molecular state to entangle 6^{6}Li and 133^{133}Cs ultracold atoms held in independent optical lattices. The 6^{6}Li atoms will act as quantum bits to store information, and 133^{133}Cs atoms will serve as messenger bits that aid in quantum gate operations and mediate entanglement between distant qubit atoms. Each atomic species is held in a separate optical lattice and the atoms can be overlapped by translating the lattices with respect to each other. When the messenger and qubit atoms are overlapped, targeted single spin operations and entangling operations can be performed by coupling the atomic states to a molecular state with radio-frequency pulses. By controlling the frequency and duration of the radio-frequency pulses, entanglement can either be created or swapped between a qubit messenger pair. We estimate operation fidelities for entangling two distant qubits and discuss scalability of this scheme and constraints on the optical lattice lasers

    Acts of Kindness and Acts of Novelty Affect Life Satisfaction

    Get PDF
    The present experiment was designed to establish the effects of acts of kindness and acts of novelty on life satisfaction. Participants aged 18–60 took part on a voluntary basis. They were randomly assigned to perform either acts of kindness, acts of novelty, or no acts on a daily basis for 10 days. Their life satisfaction was measured before and after the 10-day experiment. As expected, performing acts of kindness or acts of novelty resulted in an increase in life satisfaction

    Implementation of Grover's Quantum Search Algorithm in a Scalable System

    Full text link
    We report the implementation of Grover's quantum search algorithm in the scalable system of trapped atomic ion quantum bits. Any one of four possible states of a two-qubit memory is marked, and following a single query of the search space, the marked element is successfully recovered with an average probability of 60(2)%. This exceeds the performance of any possible classical search algorithm, which can only succeed with a maximum average probability of 50%.Comment: 4 pages, 3 figures, updated error discussio

    Phase Control of Trapped Ion Quantum Gates

    Full text link
    There are several known schemes for entangling trapped ion quantum bits for large-scale quantum computation. Most are based on an interaction between the ions and external optical fields, coupling internal qubit states of trapped-ions to their Coulomb-coupled motion. In this paper, we examine the sensitivity of these motional gate schemes to phase fluctuations introduced through noisy external control fields, and suggest techniques to suppress the resulting phase decoherence.Comment: 21 pages 12 figure

    Detecting unambiguously non-Abelian geometric phases with trapped ions

    Full text link
    We propose for the first time an experimentally feasible scheme to disclose the noncommutative effects induced by a light-induced non-Abelian gauge structure with trapped ions. Under an appropriate configuration, a true non-Abelian gauge potential naturally arises in connection with the geometric phase associated with two degenerated dark states in a four-state atomic system interacting with three pulsed laser fields. We show that the population in atomic state at the end of a composed path formed by two closed loops C1C_1 and C2C_2 in the parameter space can be significantly different from the composed counter-ordered path. This population difference is directly induced by the noncommutative feature of non-Abelian geometric phases and can be detected unambiguously with current technology.Comment: 6 page
    • …
    corecore