1,096 research outputs found
Zero-Point cooling and low heating of trapped 111Cd+ ions
We report on ground state laser cooling of single 111Cd+ ions confined in
radio-frequency (Paul) traps. Heating rates of trapped ion motion are measured
for two different trapping geometries and electrode materials, where no effort
was made to shield the electrodes from the atomic Cd source. The low measured
heating rates suggest that trapped 111Cd+ ions may be well-suited for
experiments involving quantum control of atomic motion, including applications
in quantum information science.Comment: 4 pages, 6 figures, Submitted to PR
Entanglement of Trapped-Ion Clock States
A M{\o}lmer-S{\o}rensen entangling gate is realized for pairs of trapped
Cd ions using magnetic-field insensitive "clock" states and an
implementation offering reduced sensitivity to optical phase drifts. The gate
is used to generate the complete set of four entangled states, which are
reconstructed and evaluated with quantum-state tomography. An average
target-state fidelity of 0.79 is achieved, limited by available laser power and
technical noise. The tomographic reconstruction of entangled states
demonstrates universal quantum control of two ion-qubits, which through
multiplexing can provide a route to scalable architectures for trapped-ion
quantum computing.Comment: 6 pages, 5 figure
Differential elasticity in lineage segregation of embryonic stem cells
The question of what guides lineage segregation is central to development,
where cellular differentiation leads to segregated cell populations destined
for specialized functions. Here, using optical tweezers measurements of mouse
embryonic stem cells (mESCs), we reveal a mechanical mechanism based on
differential elasticity in the second lineage segregation of the embryonic
inner cell mass into epiblast (EPI) cells - that will develop into the fetus -
and primitive endoderm (PrE) - which will form extraembryonic structures such
as the yolk sac. Remarkably, we find that these mechanical differences already
occur during priming and not just after a cell has committed to
differentiation. Specifically, we show that the mESCs are highly elastic
compared to any other reported cell type and that the PrE cells are
significantly more elastic than EPI-primed cells. Using a model of two cell
types differing only in elasticity we show that differential elasticity alone
can lead to segregation between cell types, suggesting that the mechanical
attributes of the cells contribute to the segregation process. Our findings
present differential elasticity as a previously unknown mechanical contributor
to the lineage segregation during the embryo morphogenesis
Quantifying Cognitive Reserve in Older Adults by Decomposing Episodic Memory Variance: Replication and Extension
The theory of cognitive reserve attempts to explain why some individuals are more resilient to age-related brain pathology. Efforts to explore reserve have been hindered by measurement difficulties. Reed et al. (2010) proposed quantifying reserve as residual variance in episodic memory performance that remains after accounting for demographic factors and brain pathology (whole brain, hippocampal, and white matter hyperintensity volumes). This residual variance represents the discrepancy between an individual's predicted and actual memory performance. The goals of the present study were to extend these methods to a larger, community-based sample and to investigate whether the residual reserve variable is explained by age, predicts longitudinal changes in language, and predicts dementia conversion independent of age. Results support this operational measure of reserve. The residual reserve variable was associated with higher reading ability, lower likelihood of meeting criteria for mild cognitive impairment, lower odds of dementia conversion in dependent of age, and less decline in language abilities over 3 years. Finally, the residual reserve variable moderated the negative impact of memory variance explained by brain pathology on language decline. This method has the potential to facilitate research on the mechanisms of cognitive reserve and the efficacy of interventions designed to impart reserve
Is Residual Memory Variance a Valid Method for Quantifying Cognitive Reserve? A Longitudinal Application
Cognitive reserve describes the mismatch between brain integrity and cognitive performance. Older adults with high cognitive reserve are more resilient to age-related brain pathology. Traditionally, cognitive reserve is indexed indirectly via static proxy variables (e.g., years of education). More recently, cross-sectional studies have suggested that reserve can be expressed as residual variance in episodic memory performance that remains after accounting for demographic factors and brain pathology (whole brain, hippocampal, and white matter hyperintensity volumes). The present study extends these methods to a longitudinal framework in a community-based cohort of 244 older adults who underwent two comprehensive neuropsychological and structural magnetic resonance imaging sessions over 4.6 years. On average, residual memory variance decreased over time, consistent with the idea that cognitive reserve is depleted over time. Individual differences in change in residual memory variance predicted incident dementia, independent of baseline residual memory variance. Multiple-group latent difference score models revealed tighter coupling between brain and language changes among individuals with decreasing residual memory variance. These results suggest that changes in residual memory variance may capture a dynamic aspect of cognitive reserve and could be a useful way to summarize individual cognitive responses to brain changes. Change in residual memory variance among initially non-demented older adults was a better predictor of incident dementia than residual memory variance measured at one time-point
- …