586 research outputs found

    Progress report on the relativistic three-particle quantization condition

    Get PDF
    We describe recent work on the relativistic three-particle quantization condition, generalizing and applying the original formalism of Hansen and Sharpe, and of Brice\~no, Hansen and Sharpe. In particular, we sketch three recent developments: the generalization of the formalism to include K-matrix poles; the numerical implementation of the quantization condition in the isotropic approximation; and ongoing work extending the description of the three-particle divergence-free K matrix beyond the isotropic approximation.Comment: 7 pages, 1 figure, Proceedings of Lattice 201

    Issues and Opportunities in Exotic Hadrons

    Get PDF
    The last few years have been witness to a proliferation of new results concerning heavy exotic hadrons. Experimentally, many new signals have been discovered that could be pointing towards the existence of tetraquarks, pentaquarks, and other exotic configurations of quarks and gluons. Theoretically, advances in lattice field theory techniques place us at the cusp of understanding complex coupled-channel phenomena, modelling grows more sophisticated, and effective field theories are being applied to an ever greater range of situations. It is thus an opportune time to evaluate the status of the field. In the following, a series of high priority experimental and theoretical issues concerning heavy exotic hadrons is presented

    Numerical Exploration of Three Relativistic Particles in a Finite Volume Including Two-Particle Resonances and Bound States

    Get PDF
    In this work, we use an extension of the quantization condition, given in ref. [1], to numerically explore the finite-volume spectrum of three relativistic particles, in the case that two-particle subsets are either resonant or bound. The original form of the relativistic three-particle quantization condition was derived under a technical assumption on the two-particle K matrix that required the absence of two-particle bound states or narrow two-particle resonances. Here we describe how this restriction can be lifted in a simple way using the freedom in the definition of the K-matrix-like quantity that enters the quantization condition. With this in hand, we extend previous numerical studies of the quantization condition to explore the finite-volume signature for a variety of two- and three-particle interactions. We determine the spectrum for parameters such that the system contains both dimers (two-particle bound states) and one or more trimers (in which all three particles are bound), and also for cases where the two-particle subchannel is resonant. We also show how the quantization condition provides a tool for determining infinite-volume dimer-particle scattering amplitudes for energies below the dimer breakup. We illustrate this for a series of examples, including one that parallels physical deuteron-nucleon scattering. All calculations presented here are restricted to the case of three identical scalar particles

    Numerical Exploration of Three Relativistic Particles in a Finite Volume Including Two-Particle Resonances and Bound States

    Get PDF
    In this work, we use an extension of the quantization condition, given in ref. [1], to numerically explore the finite-volume spectrum of three relativistic particles, in the case that two-particle subsets are either resonant or bound. The original form of the relativistic three-particle quantization condition was derived under a technical assumption on the two-particle K matrix that required the absence of two-particle bound states or narrow two-particle resonances. Here we describe how this restriction can be lifted in a simple way using the freedom in the definition of the K-matrix-like quantity that enters the quantization condition. With this in hand, we extend previous numerical studies of the quantization condition to explore the finite-volume signature for a variety of two- and three-particle interactions. We determine the spectrum for parameters such that the system contains both dimers (two-particle bound states) and one or more trimers (in which all three particles are bound), and also for cases where the two-particle subchannel is resonant. We also show how the quantization condition provides a tool for determining infinite-volume dimer-particle scattering amplitudes for energies below the dimer breakup. We illustrate this for a series of examples, including one that parallels physical deuteron-nucleon scattering. All calculations presented here are restricted to the case of three identical scalar particles

    Carbendazim dissipation in the biomixture of on-farm biopurification systems and its effect on microbial communities

    Get PDF
    The impact of repeated carbendazim (CARB) applications on the extent of \CARB\ dissipation, the microbial diversity, the community level physiological profile (CLPP), and the enzymatic activity within the biomixture of an on-farm biopurification system was evaluated. After three successive \CARB\ applications, the \CARB\ dissipation efficiency was high; the efficiency of dissipation was 87%, 94% and 96% after each application, respectively. Although microbial enzymatic activity was affected significantly by \CARB\ application, it could recover after each \CARB\ pulse. Likewise, the numbers of cultivable bacteria, fungi and actinomycetes (as measured in CFUs) were slightly affected by the addition of CARB, but the inhibitory effect of the pesticide application was temporary. Denaturing gradient gel electrophoresis (DGGE) and Biolog Ecoplate assays demonstrated that the microbial populations remained relatively stable over time when compared to the control. The results obtained herein therefore demonstrate the high dissipation capacity of this biomixture and highlight the microbiological robustness of this biological system.This work was supported by FONDECYT project No 11100236

    Pliocene sigmodontine rodents (Mammalia: Cricetidae) in northernmost South America: test of biogeographic hypotheses and revised evolutionary scenarios

    Full text link
    We document the first occurrence of Sigmodontinae (Mammalia, Rodentia, Cricetidae) from the Pliocene of northern South America, from the San Gregorio Formation of northwestern Venezuela. The recovered isolated molars are identified as Oligoryzomys sp. and Zygodontomys sp., two currently widespread sigmodontines in South America. These records constitute the oldest representatives of these genera, potentially new species, and the first Pliocene occurrence for Oryzomyini and the whole subfamily outside Argentina. Hypotheses on the historical biogeography of sigmodontines have been constructed almost exclusively using genetic data and the fossils we report provide a new kind of evidence. The occurrence of Oligoryzomys sp. and Zygodontomys sp. in Venezuela provides novel information for the diversification models suggested for Oligoryzomys, by supporting a potential eastern corridor of open environments from northern to southern South America. The presence of sigmodontines from the locality home of the new reports, Norte Casa Chiguaje, is consistent with the palaeoenvironmental conditions originally proposed for it based on mammals and botanical records, being characterized as mixed open grassland/forest areas surrounding permanent freshwater systems. The new sigmodontine evidence is used to discuss the putative scenarios of the ancient evolution of the subfamily in South America, favouring a model in which open areas (savannahs) to the east of the Andes played crucial role aiding or obstructing Late Miocene-Pliocene sigmodontine dispersion southwards

    Vortex structure and resistive transitions in high-Tc superconductors

    Full text link
    The nature of the resistive transition for a current applied parallel to the magnetic field in high-Tc materials is investigated by numerical simulation on the three dimensional Josephson junction array model. It is shown by using finite size scaling that for samples with disorder the critical temperature Tp for the c axis resistivity corresponds to a percolation phase transition of vortex lines perpendicularly to the applied field. The value of Tp is higher than the critical temperature for j perpendicular to H, but decreases with the thickness of the sample and with anisotropy. We predict that critical behavior around Tp should reflect in experimentally accessible quantities, as the I-V curves.Comment: 8 pages + 6 figure

    Crocodylian diversity peak and extinction in the late Cenozoic of the northern Neotropics

    Get PDF
    Northern South America and South East Asia are today’s hotspots of crocodylian diversity with up to six (mainly alligatorid) and four (mainly crocodylid) living species respectively, of which usually no more than two or three occur sympatrically. In contrast, during the late Miocene, 14 species existed in South America. Here we show a diversity peak in sympatric occurrence of at least seven species, based on detailed stratigraphic sequence sampling and correlation, involving four geological formations from the middle Miocene to the Pliocene, and on the discovery of two new species and a new occurrence. This degree of crocodylian sympatry is unique in the world and shows that at least several members of Alligatoroidea and Gavialoidea coexisted. By the Pliocene, all these species became extinct, and their extinction was probably related to hydrographic changes linked to the Andean uplift. The extant fauna is first recorded with the oldest Crocodylus species from South America.Facultad de Ciencias Naturales y Muse
    corecore