2 research outputs found

    Implementation of Quantitative Resilience Measurement Criteria in Irrigation Systems

    Full text link
    [EN] This paper shows the research developed in order to evaluate two resilience indicators, PHRI and Rsys, in the San Francisco de Cunuguachay pressurized irrigation network, specifically in the Yulchirón 2 branch. In this context, the irrigation branch was designed to operate on an on-demand basis and in shifts in order to evaluate the indicators in both operation modes, subjecting the network to unfavourable events. The resilience at the level of pressures and demands of the branch is estimated to remain operational in the different disruptive events, meeting the minimum conditions of the initial design. In this regard, with the implementation of resilience indicators in irrigation networks, it is possible to diagnose the response of the network to changes in its operation. Therefore, the use of indicators allows for obtaining a more reliable and adaptable network to changes in its operation. Consequently, the use of indicators allows for obtaining more reliable and adaptable networks to changes, since the engineer can make the right decisions in the project, improving the planning and management of irrigation networks.Universidad Tecnica Particular de Loja (Ecuador).Lapo Pauta, CM.; Briceño Ojeda, VA.; Martínez-Solano, FJ.; Benavides Muñoz, H. (2022). Implementation of Quantitative Resilience Measurement Criteria in Irrigation Systems. Water. 14(17):1-20. https://doi.org/10.3390/w14172698120141

    Implementation of Quantitative Resilience Measurement Criteria in Irrigation Systems

    No full text
    This paper shows the research developed in order to evaluate two resilience indicators, PHRI and Rsys, in the San Francisco de Cunuguachay pressurized irrigation network, specifically in the Yulchirón 2 branch. In this context, the irrigation branch was designed to operate on an on-demand basis and in shifts in order to evaluate the indicators in both operation modes, subjecting the network to unfavourable events. The resilience at the level of pressures and demands of the branch is estimated to remain operational in the different disruptive events, meeting the minimum conditions of the initial design. In this regard, with the implementation of resilience indicators in irrigation networks, it is possible to diagnose the response of the network to changes in its operation. Therefore, the use of indicators allows for obtaining a more reliable and adaptable network to changes in its operation. Consequently, the use of indicators allows for obtaining more reliable and adaptable networks to changes, since the engineer can make the right decisions in the project, improving the planning and management of irrigation networks
    corecore