56 research outputs found
Non linear transport properties of an insulating YBCO nano-bridge
We have investigated the transport properties of an insulating
sub-micrometric YBa2Cu3O7-d bridge, patterned on a thin film. As expected for a
variable-range-hopping insulator, transport is found non linear. The reduced
dimension allows for the observation of an individual fluctuator generating
random telegraph noise, which dynamics could be explored as a function of the
temperature and transport current. Some recordings clearly exhibit three levels
fluctuating resistance, with comparable level separation and correlated
dynamics, which likely result from the existence of two states or correlated
clustered charge traps
Study and optimization of ion-irradiated High-Tc Josephson nanoJunctions by Monte Carlo simulations
High Tc Josephson nanoJunctions (HTc JnJ) made by ion irradiation have
remarkable properties for technological applications. However, the spread in
their electrical characteristics increases with the ion dose. We present a
simple model to explain the JnJ inhomogeneities, which accounts quantitatively
for experimental data. The spread in the slit's width of the irradiation mask
is the limiting factor.Monte Carlo simulations have been performed using
different irradiation conditions to study their influence on the spread of the
JnJ charcateristics. A "universal" behavior has been evidenced, which allows to
propose new strategies to optimize JnJ reproducibility.Comment: 14 pages, 6 Figures. accepted in Journal of Applied Physic
Improving HTc Josephson Junctions (HTc JJ) by annealing: the role of vacancy-interstitial annihilation
We have studied the annealing effect in transport properties of High
temperature Josephson Junctions (HTc JJ) made by ion irradiation. Low
temperature annealing (80 degrees Celsius) increases the JJ transition
temperature (TJ) and the Ic.Rn product, where Ic is the critical current and Rn
the normal resistance. We found that the spread in JJ characteristics can be
lowered by sufficient long annealing times. Using random walk numerical
simulations, we showed that the characteristic annealing time and the evolution
of the spread in JJ characteristics can be explained by a vacancy-interstitial
annihilation process rather than by an oxygen diffusion one.Comment: 7 pages and 3 figures submitted to Applied Physics Letter
Unusual magneto-transport of YBa2Cu3O7-d films due to the interplay of anisotropy, random disorder and nanoscale periodic pinning
We study the general problem of a manifold of interacting elastic lines whose
spatial correlations are strongly affected by the competition between random
and ordered pinning. This is done through magneto-transport experiments with
YBa2Cu3O7-d thin films that contain a periodic vortex pinning array created via
masked ion irradiation, in addition to the native random pinning. The strong
field-matching effects we observe suggest the prevalence of periodic pinning,
and indicate that at the matching field each vortex line is bound to an
artificial pinning site. However, the vortex-glass transition dimensionality,
quasi-2D instead of the usual 3D, evidences reduced vortex-glass correlations
along the vortex line. This is also supported by an unusual angular dependence
of the magneto-resistance, which greatly differs from that of Bose-glass
systems. A quantitative analysis of the angular magnetoresistance allows us to
link this behaviour to the enhancement of the system anisotropy, a collateral
effect of the ion irradiation
Electron-Doped Manganese Perovskites: The Polaronic State
Using the Lanczos method in linear chains we study the ground state of the
double exchange model including an antiferromagnetic super-exchange in the low
concentration limit. We find that this ground state is always inhomogeneous,
containig ferromagnetic polarons. The extention of the polaron spin distortion,
the dispersion relation and their trapping by impurities, are studied for
diferent values of the super exchange interaction and magnetic field. We also
find repulsive polaron polaron interaction.Comment: 4 pages, 6 embedded figure
Tuning the interfacial charge, orbital, and spin polarization properties in La0.67Sr0.33MnO3/La1-xSrxMnO3 bilayers
The possibility of controlling the interfacial properties of artificial oxide heterostructures is still attracting researchers in the field of materials engineering. Here, we used surface sensitive techniques and high-resolution transmission electron microscopy to investigate the evolution of the surface spin-polarization and lattice strains across the interfaces between La0.66Sr0.33MnO3 thin films and low-doped manganites as capping layers. We have been able to fine tune the interfacial spin-polarization by changing the capping layer thickness and composition. The spin-polarization was found to be the highest at a critical capping thickness that depends on the Sr doping. We explain the non-trivial magnetic profile by the combined effect of two mechanisms: On the one hand, the extra carriers supplied by the low-doped manganites that tend to compensate the overdoped interface, favouring locally a ferromagnetic double-exchange coupling. On the other hand, the evolution from a tensile-strained structure of the inner layers to a compressed structure at the surface that changes gradually the orbital occupation and hybridization of the 3d-Mn orbitals, being detrimental for the spin polarization. The finding of an intrinsic spin-polarization at the A-site cation observed in x-ray magnetic circular dichroism (XMCD) measurements also reveals the existence of a complex magnetic configuration at the interface, different from the magnetic phases observed at the inner layers
- …