7 research outputs found

    Immature myeloid cells directly contribute to skin tumor development by recruiting IL-17-producing CD4(+) T cells

    Get PDF
    Evidence links chronic inflammation with cancer, but cellular mechanisms involved in this process remain unclear. We have demonstrated that in humans, inflammatory conditions that predispose to development of skin and colon tumors are associated with accumulation in tissues of CD33(+)S100A9(+) cells, the phenotype typical for myeloid-derived suppressor cells in cancer or immature myeloid cells (IMCs) in tumor-free hosts. To identify the direct role of these cells in tumor development, we used S100A9 transgenic mice to create the conditions for topical accumulation of these cells in the skin in the absence of infection or tissue damage. These mice demonstrated accumulation of granulocytic IMCs in the skin upon topical application of 12-O-tetradecanoylphorbol-13-acetate (TPA), resulting in a dramatic increase in the formation of papillomas during epidermal carcinogenesis. The effect of IMCs on tumorigenesis was not associated with immune suppression, but with CCL4 (chemokine [C-C motif] ligand 4)-mediated recruitment of IL-17–producing CD4(+) T cells. This chemokine was released by activated IMCs. Elimination of CD4(+) T cells or blockade of CCL4 or IL-17 abrogated the increase in tumor formation caused by myeloid cells. Thus, this study implicates accumulation of IMCs as an initial step in facilitation of tumor formation, followed by the recruitment of CD4(+) T cells

    Anti-Leukemic Properties of Histamine in Monocytic Leukemia: The Role of NOX2

    No full text
    In patients with acute myeloid leukemia (AML), treatment with histamine dihydrochloride (HDC) and low-dose IL-2 (HDC/IL-2) in the post-chemotherapy phase has been shown to reduce the incidence of leukemic relapse. The clinical benefit of HDC/IL-2 is pronounced in monocytic forms of AML, where the leukemic cells express histamine type 2 receptors (H2R) and the NAPDH oxidase-2 (NOX2). HDC ligates to H2Rs to inhibit NOX2-derived formation of reactive oxygen species, but details regarding the anti-leukemic actions of HDC remain to be elucidated. Here, we report that human NOX2+ myelomonocytic/monocytic AML cell lines showed increased expression of maturation markers along with reduced leukemic cell proliferation after exposure to HDC in vitro. These effects of HDC were absent in corresponding leukemic cells genetically depleted of NOX2 (NOX2−/−). We also observed that exposure to HDC altered the expression of genes involved in differentiation and cell cycle progression in AML cells and that these effects required the presence of NOX2. HDC promoted the differentiation also of primary monocytic, but not non-monocytic, AML cells in vitro. In a xenograft model, immunodeficient NOG mice were inoculated with wild-type or NOX2−/− human monocytic AML cells and treated with HDC in vivo. The administration of HDC reduced the in vivo expansion of NOX2+/+, but not of NOX2−/− human monocytic AML cells. We propose that NOX2 may be a conceivable target in the treatment of monocytic AML

    Data_Sheet_1_Anti-Leukemic Properties of Histamine in Monocytic Leukemia: The Role of NOX2.PDF

    No full text
    <p>In patients with acute myeloid leukemia (AML), treatment with histamine dihydrochloride (HDC) and low-dose IL-2 (HDC/IL-2) in the post-chemotherapy phase has been shown to reduce the incidence of leukemic relapse. The clinical benefit of HDC/IL-2 is pronounced in monocytic forms of AML, where the leukemic cells express histamine type 2 receptors (H<sub>2</sub>R) and the NAPDH oxidase-2 (NOX2). HDC ligates to H<sub>2</sub>Rs to inhibit NOX2-derived formation of reactive oxygen species, but details regarding the anti-leukemic actions of HDC remain to be elucidated. Here, we report that human NOX2<sup>+</sup> myelomonocytic/monocytic AML cell lines showed increased expression of maturation markers along with reduced leukemic cell proliferation after exposure to HDC in vitro. These effects of HDC were absent in corresponding leukemic cells genetically depleted of NOX2 (NOX2<sup>−/−</sup>). We also observed that exposure to HDC altered the expression of genes involved in differentiation and cell cycle progression in AML cells and that these effects required the presence of NOX2. HDC promoted the differentiation also of primary monocytic, but not non-monocytic, AML cells in vitro. In a xenograft model, immunodeficient NOG mice were inoculated with wild-type or NOX2<sup>−/−</sup> human monocytic AML cells and treated with HDC in vivo. The administration of HDC reduced the in vivo expansion of NOX2<sup>+/+</sup>, but not of NOX2<sup>−/−</sup> human monocytic AML cells. We propose that NOX2 may be a conceivable target in the treatment of monocytic AML.</p
    corecore