4,911 research outputs found

    The Formation of Population III Binaries from Cosmological Initial Conditions

    Full text link
    Previous high resolution cosmological simulations predict the first stars to appear in the early universe to be very massive and to form in isolation. Here we discuss a cosmological simulation in which the central 50 solar mass clump breaks up into two cores, having a mass ratio of two to one, with one fragment collapsing to densities of 10^{-8} g/cc. The second fragment, at a distance of 800 astronomical units, is also optically thick to its own cooling radiation from molecular hydrogen lines, but is still able to cool via collision-induced emission. The two dense peaks will continue to accrete from the surrounding cold gas reservoir over a period of 10^5 years and will likely form a binary star system.Comment: Accepted by Science, first published online on July 9, 2009 in Science Express. 16 pages, 4 figures, includes supporting online materia

    Determination of chromium in titanium dioxide pigments by atomic spectrometry

    Get PDF
    Imperial Users onl

    Operator bases, SS-matrices, and their partition functions

    Full text link
    Relativistic quantum systems that admit scattering experiments are quantitatively described by effective field theories, where SS-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. In this paper we use the SS-matrix to derive the structure of the EFT operator basis, providing complementary descriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) momentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal. These frameworks systematically handle redundancies associated with equations of motion (on-shell) and integration by parts (momentum conservation). We introduce a partition function, termed the Hilbert series, to enumerate the operator basis--correspondingly, the SS-matrix--and derive a matrix integral expression to compute the Hilbert series. The expression is general, easily applied in any spacetime dimension, with arbitrary field content and (linearly realized) symmetries. In addition to counting, we discuss construction of the basis. Simple algorithms follow from the algebraic formulation in momentum space. We explicitly compute the basis for operators involving up to n=5n=5 scalar fields. This construction universally applies to fields with spin, since the operator basis for scalars encodes the momentum dependence of nn-point amplitudes. We discuss in detail the operator basis for non-linearly realized symmetries. In the presence of massless particles, there is freedom to impose additional structure on the SS-matrix in the form of soft limits. The most na\"ive implementation for massless scalars leads to the operator basis for pions, which we confirm using the standard CCWZ formulation for non-linear realizations.Comment: 75 pages plus appendice

    First Stars III Conference Summary

    Full text link
    The understanding of the formation, life, and death of Population III stars, as well as the impact that these objects had on later generations of structure formation, is one of the foremost issues in modern cosmological research and has been an active area of research during the past several years. We summarize the results presented at "First Stars III," a conference sponsored by Los Alamos National Laboratory, the Kavli Institute for Particle Astrophysics and Cosmology, and the Joint Institute for Nuclear Astrophysics. This conference, the third in a series, took place in July 2007 at the La Fonda Hotel in Santa Fe, New Mexico, U.S.A.Comment: 11 pages, no figures; Conference summary for First Stars III, which was held in Santa Fe, NM on July 15-20, 2007. To appear in "Proceedings of First Stars III," Eds. Brian W. O'Shea, Alexander Heger & Tom Abe

    Maximum likelihood and pseudo score approaches for parametric time-to-event analysis with informative entry times

    Full text link
    We develop a maximum likelihood estimating approach for time-to-event Weibull regression models with outcome-dependent sampling, where sampling of subjects is dependent on the residual fraction of the time left to developing the event of interest. Additionally, we propose a two-stage approach which proceeds by iteratively estimating, through a pseudo score, the Weibull parameters of interest (i.e., the regression parameters) conditional on the inverse probability of sampling weights; and then re-estimating these weights (given the updated Weibull parameter estimates) through the profiled full likelihood. With these two new methods, both the estimated sampling mechanism parameters and the Weibull parameters are consistently estimated under correct specification of the conditional referral distribution. Standard errors for the regression parameters are obtained directly from inverting the observed information matrix in the full likelihood specification and by either calculating bootstrap or robust standard errors for the hybrid pseudo score/profiled likelihood approach. Loss of efficiency with the latter approach is considered. Robustness of the proposed methods to misspecification of the referral mechanism and the time-to-event distribution is also briefly examined. Further, we show how to extend our methods to the family of parametric time-to-event distributions characterized by the generalized gamma distribution. The motivation for these two approaches came from data on time to cirrhosis from hepatitis C viral infection in patients referred to the Edinburgh liver clinic. We analyze these data here.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS725 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore