2,480 research outputs found

    TRANCE (Tumor necrosis factor [TNF]-related Activation-induced Cytokine), a new TNF family member predominantly expressed in t cells, is a dendritic cell-specific survival factor

    Get PDF
    TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine) is a new member of the TNF family that is induced upon T cell receptor engagement and activates c-Jun N-terminal kinase (JNK) after interaction with its putative receptor (TRANCE-R). In addition, TRANCE expression is restricted to lymphoid organs and T cells. Here, we show that high levels of TRANCE-R are detected on mature dendritic cells (DCs) but not on freshly isolated B cells, T cells, or macrophages. Signaling by TRANCE-R appears to be dependent on TNF receptor-associated factor 2 (TRAF2), since JNK induction is impaired in cells from transgenic mice overexpressing a dominant negative TRAF2 protein. TRANCE inhibits apoptosis of mouse bone marrow-derived DCs and human monocyte-derived DCs in vitro. The resulting increase in DC survival is accompanied by a proportional increase in DC-mediated T cell proliferation in a mixed leukocyte reaction. TRANCE upregulates Bcl-X(L) expression, suggesting a potential mechanism for enhanced DC survival. TRANCE does not induce the proliferation of or increase the survival oft or B cells. Therefore, TRANCE is a new DC-restricted survival factor that mediates T cell-DC communication and may provide a tool to selectively enhance DC activity

    TRANCE, a tumor necrosis factor family member critical for CD40 ligand- independent T helper cell activation

    Get PDF
    CD40 ligand (CD40L), a tumor necrosis factor (TNF) family member, plays a critical role in antigen-specific T cell responses in vivo. CD40L expressed on activated CD4+ T cells stimulates antigen-presenting cells such as dendritic cells, resulting in the upregulation of costimulatory molecules and the production of various inflammatory cytokines required for CD4+ T cell priming in vivo. However, CD40L- or CD40-deficient mice challenged with viruses mount protective CD4+ T cell responses that produce normal levels of interferon γ, suggesting a CD40L/CD40-independent mechanism of CD4+ T cell priming that to date has not been elucidated. Here we show that CD4+ T cell responses to viral infection were greatly diminished in CD40-deficient mice by administration of a soluble form of TNF-related activation-induced cytokine receptor (TRANCE-R) to inhibit the function of another TNF family member, TRANCE. Thus, the TRANCE/TRANCE-R interaction provides costimulation required for efficient CD4+ T cell priming during viral infection in the absence of CD40L/CD40. These results also indicate that not even the potent inflammatory microenvironment induced by viral infections is sufficient to elicit efficient CD4+ T cell priming without proper costimulation provided by the TNF family (CD40L or TRANCE). Moreover, the data suggest that TRANCE/TRANCE-R may be a novel and important target for immune intervention

    The TRAF family of signal transducers mediates NF-κB activation by the TRANCE receptor

    Get PDF
    Tumor necrosis factor (TNF)-related activation-induced cytokine (TRANCE), a member of the TNF family expressed on activated T-cells, bone marrow stromal cells, and osteoblasts, regulates the function of dendritic cells (DC) and osteoclasts. The TRANCE receptor (TRANCE-R), recently identified as receptor activator of NF-κβ (RANK), activates NF-κB, a transcription factor critical in the differentiation and activation of those cells. In this report we identify the TNF receptor-associated factor (TRAF) family of signal transducers as important components of TRANCE-R-mediated NF- κB activation. Coimmunoprecipitation experiments suggested potential interactions between the cytoplasmic tail of TRANCE-R with TRAF1, TRAF2, TRAF3, TRAF5, and TRAF6. Dominant negative forms of TRAF2, TRAF5, and TRAF6 and an endogenous inhibitor of TRAF2, TRAF-interacting protein (TRIP), substantially inhibited TRANCE-R-mediated NF-κB activation, suggesting a role of TRAFs in regulating DC and osteoclast function. Overexpression of combinations of TRAF dominant negative proteins revealed competition between TRAF proteins for the TRANCE-R and the possibility of a TRAF-independent NF- κB pathway. Analysis of TRANCE-R deletion mutants suggested that the TRAF2 and TRAF5 interaction sites were restricted to the C-terminal 93 amino acids (C-region). TRAF6 also complexed to the C-region in addition to several regions N-terminal to the TRAF2 and TRAF5 association sites. Furthermore, transfection experiments with TRANCE-R deletion mutants revealed that multiple regions of the TRANCE-R can mediate NF-κB activation

    Exploiting Connections for Viral Replication.

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the COVID-19 (coronavirus disease 2019) pandemic, is a positive strand RNA (+RNA) virus. Like other +RNA viruses, SARS-CoV-2 is dependent on host cell metabolic machinery to survive and replicate, remodeling cellular membranes to generate sites of viral replication. Viral RNA-containing double-membrane vesicles (DMVs) are a striking feature of +RNA viral replication and are abundant in SARS-CoV-2-infected cells. Their generation involves rewiring of host lipid metabolism, including lipid biosynthetic pathways. Viruses can also redirect lipids from host cell organelles; lipid exchange at membrane contact sites, where the membranes of adjacent organelles are in close apposition, has been implicated in the replication of several +RNA viruses. Here we review current understanding of DMV biogenesis. With a focus on the exploitation of contact site machinery by +RNA viruses to generate replication organelles, we discuss evidence that similar mechanisms support SARS-CoV-2 replication, protecting its RNA from the host cell immune response

    First Detection of HCO+^+ Absorption in the Magellanic System

    Full text link
    We present the first detection of HCO+^+ absorption in the Magellanic System. Using the Australia Telescope Compact Array (ATCA), we observed 9 extragalactic radio continuum sources behind the Magellanic System and detected HCO+^+ absorption towards one source located behind the leading edge of the Magellanic Bridge. The detection is located at LSR velocity of v=214.0±0.4 km s−1v=214.0 \pm 0.4\rm\,km\,s^{-1}, with a full width at half maximum of Δv=4.5±1.0 km s−1\Delta v=4.5\pm 1.0\rm\,km\,s^{-1} and optical depth of τ(HCO+)=0.10±0.02\tau(\rm HCO^+)=0.10\pm 0.02. Although there is abundant neutral hydrogen (HI) surrounding the sightline in position-velocity space, at the exact location of the absorber the HI column density is low, <1020 cm−2<10^{20}\rm\,cm^{-2}, and there is little evidence for dust or CO emission from Planck observations. While the origin and survival of molecules in such a diffuse environment remains unclear, dynamical events such as HI flows and cloud collisions in this interacting system likely play an important role.Comment: Accepted for publication in ApJ. 6 pages, 2 figures, 2 table

    A comprehensive review of the sinuvertebral nerve with clinical applications.

    Get PDF
    The anatomy and clinical significance of the sinuvertebral nerve is a topic of considerable interest among anatomists and clinicians, particularly its role in discogenic pain. It has required decades of research to appreciate its role, but not until recently could these studies be compiled to establish a more complete description of its clinical significance. The sinuvertebral nerve is a recurrent nerve that originates from the ventral ramus, re-entering the spinal canal via the intervertebral foramina to innervate multiple meningeal and non-meningeal structures. Its complex anatomy and relationship to discogenic pain have warranted great interest among clinical anatomists owing to its sympathetic contribution to the lumbar spine. Knowledge of the nerve has been used to design a variety of diagnostic and treatment procedures for chronic discogenic pain. This paper reviews the anatomy and clinical aspects of the sinuvertebral nerve

    Thy-1 interaction with Fas in lipid rafts regulates fibroblast apoptosis and lung injury resolution.

    Get PDF
    Thy-1-negative lung fibroblasts are resistant to apoptosis. The mechanisms governing this process and its relevance to fibrotic remodeling remain poorly understood. By using either sorted or transfected lung fibroblasts, we found that Thy-1 expression is associated with downregulation of anti-apoptotic molecules Bcl-2 and Bcl-xL, as well as increased levels of cleaved caspase-9. Addition of rhFasL and staurosporine, well-known apoptosis inducers, caused significantly increased cleaved caspase-3, -8, and PARP in Thy-1-transfected cells. Furthermore, rhFasL induced Fas translocation into lipid rafts and its colocalization with Thy-1. These in vitro results indicate that Thy-1, in a manner dependent upon its glycophosphatidylinositol anchor and lipid raft localization, regulates apoptosis in lung fibroblasts via Fas-, Bcl-, and caspase-dependent pathways. In vivo, Thy-1 deficient (Thy1-/-) mice displayed persistence of myofibroblasts in the resolution phase of bleomycin-induced fibrosis, associated with accumulation of collagen and failure of lung fibrosis resolution. Apoptosis of myofibroblasts is decreased in Thy1-/- mice in the resolution phase. Collectively, these findings provide new evidence regarding the role and mechanisms of Thy-1 in initiating myofibroblast apoptosis that heralds the termination of the reparative response to bleomycin-induced lung injury. Understanding the mechanisms regulating fibroblast survival/apoptosis should lead to novel therapeutic interventions for lung fibrosis
    • …
    corecore