2,470 research outputs found

    The link evaluation terminal for the advanced communications technology satellite experiments program

    Get PDF
    The experimental NASA satellite, Advanced Communications Technology Satellite (ACTS), introduces new technology for high throughput 30 to 20 GHz satellite services. Contained in a single communication payload is both a regenerative TDMA system and multiple 800 MHz 'bent pipe' channels routed to spot beams by a switch matrix. While only one mode of operation is typical during any experiment, both modes can operate simultaneously with reduced capability due to sharing of the transponder. NASA-Lewis instituted a ground terminal development program in anticipation of the satellite launch to verify the performance of the switch matrix mode of operations. Specific functions are built into the ground terminal to evaluate rain fade compensation with uplink power control and to monitor satellite transponder performance with bit error rate measurements. These functions were the genesis of the ground terminal's name, Link Evaluation Terminal, often referred to as LET. Connectors are included in LET that allow independent experimenters to run unique modulation or network experiments through ACTS using only the RF transmit and receive portions of LET. Test data indicate that LET will be able to verify important parts of ACTS technology and provide independent experimenters with a useful ground terminal. Lab measurements of major subsystems integrated into LET are presented. Bit error rate is measured with LET in an internal loopback mode

    Pulsed response of a traveling-wave tube

    Get PDF
    The consequence of frequency-domain multiple access (FDMA) channelization in a satellite communications system is that the ground- and space-based components are often required to operate at reduced output power to prevent the generation of distortions. However, the components of a time-division multiple access (TDMA) satellite system, such as a traveling-wave tube (TWT), can operate at the highest output power because the channelization technique is relatively insensitive to the distortions resulting from saturated operation. A Hughes 30-GHz TWT was tested to determine the suitability of such a device in a TDMA system. Testing was focused on the ability of the TWT to rise up to full power at the leading edge of TDMA bursts, which were simulated by a pulse train. A Wavetek model 8502A peak power meter was used to display and measure the pulsed signal waveform. Measurements of the TWT output signal rise time indicate that the TWT lengthened the rise time by 10 to 20 nsec. Imposing a modulator turn-on time that precedes the data burst by the TWT rise time is a logical approach to coordinating the traveling-wave tube amplifier and modulator specifications

    The compression theorem I

    Full text link
    This the first of a set of three papers about the Compression Theorem: if M^m is embedded in Q^q X R with a normal vector field and if q-m > 0, then the given vector field can be straightened (ie, made parallel to the given R direction) by an isotopy of M and normal field in Q X R. The theorem can be deduced from Gromov's theorem on directed embeddings [M Gromov, Partial differential relations, Springer-Verlag (1986); 2.4.5 C'] and is implicit in the preceeding discussion. Here we give a direct proof that leads to an explicit description of the finishing embedding. In the second paper in the series we give a proof in the spirit of Gromov's proof and in the third part we give applications.Comment: This is a shortened version of "The compression theorem": applications have been omitted and will be published as part III. For a preliminary version of part III, see section 5 onwards of version 2 of this paper. This version (v3) is published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol5/paper14.abs.htm

    Anomalous TWTA output power spikes and their effect on a digital satellite communications system

    Get PDF
    Several 30 GHz, 60 W traveling wave tube amplifiers (TWTA) were manufactured for the NASA Lewis Research Center's High Burst Rate Link Evaluation Terminal Project. An unusual operating problem characterized by anomalous nonperiodic output power spikes, common to all of the TWTAs proved during testing to significantly affect the performance of a digitally-modulated data transmission test system. Modifications made to the TWTAs significantly curtailed the problem and allowed acceptable system performance to be obtained. This paper presents a discussion of the TWTA output power spike problem, possible causes of the problem, and the solutions implemented by the manufacturer which improved the TWTA performance to an acceptable level. The results of the testing done at NASA Lewis on the TWTAs both before and after the improvement made by Hughes are presented, and the effects of the output power spikes on the performance of the test system are discussed

    A survey of radial velocities in the zodiacal dust cloud

    No full text
    This thesis documents the building of a pressure-scanned Fabry-Perot Spectrometer, equipped with a photomultiplier and pulse-counting electronics, and its deployment at the Observatorio del Teide at Izaña in Tenerife, at an altitude of 7,700 feet (2567 m), for the purpose of recording high-resolution spectra of the Zodiacal Light. The aim was to achieve the first systematic mapping of the MgI absorption line in the Night Sky, as a function of position in heliocentric coordinates, covering especially the plane of the ecliptic, for a wide variety of elongations from the Sun. More than 250 scans of both morning and evening Zodiacal Light were obtained, in two observing periods – September-October 1971, and April 1972. The scans, as expected, showed profiles modified by components variously Doppler-shifted with respect to the unshifted shape seen in daylight. Unexpectedly, MgI emission was also discovered. These observations covered for the first time a span of elongations from 25º East, through 180º (the Gegenschein), to 27º West, and recorded average shifts of up to six tenths of an angstrom, corresponding to a maximum radial velocity relative to the Earth of about 40 km/s. The set of spectra obtained is in this thesis compared with predictions made from a number of different models of a dust cloud, assuming various distributions of dust density as a function of position and particle size, and differing assumptions about their speed and direction. The observations fit predominantly prograde models fairly well, but show a morning-evening asymmetry, different in the two observing periods. Models are investigated containing various components, including prograde and retrograde orbiting dust around the Sun, a drift of interstellar material though the Solar System, and light from distant emitting matter. The implications for possible asymmetries of the Zodiacal Cloud are discussed. Other researches on the Zodiacal Dust Cloud, before, during, and after my observations, are reviewed, including recent insights into its structure, orientation, and evolution, up to the present day, and my observations are evaluated in this context. Period of study, 1970-2007
    corecore