731 research outputs found

    Position-Specific Hydrogen Isotope Equilibrium in Propane

    Get PDF
    Intramolecular isotope distributions can constrain source attribution, mechanisms of formation and destruction, and temperature-time histories of molecules. In this study, we explore the D/H fractionation between central (-CH_2-) and terminal (-CH_3) positions of propane (C_3H_8)- a percent level component of natural gases. The temperature dependenceof position-specific D/H fractionation of propane could potentially work as a geo-thermometer for natural gas systems, and a forensic identifier of specific thermogenic sources of atmospheric or aquatic emissions. Moreover, kinetically controlled departures from temperature dependent equilibrium might constrain mechanisms of thermogenic production, or provide indicators of biological or photochemical destruction. We developed a method to measure position-specific D/H differences of propane with high-resolution gas source mass spectrometry. We performed laboratory exchange experiments to study the exchange ratesfor both terminal and central positions, and used catalysts to drive the hydrogen isotopedistribution of propane to thermodynamic equilibrium. Experimental results demonstrate that D/H exchange between propane and water happens easily in the presence of either Pd catalyst or Ni catalyst. Exchange rates are similar between the two positions catalyzed by Pd. However, the central position exchanges 2.2 times faster than the terminal position in the presence of Ni catalyst. At 200 °C in the presence of Pd catalyst, the e-folding time of propane-water exchange is 20 days and of homogeneous exchange (i.e., equilibrium between central and terminal positions) is 28 min. An equilibrated (bracketed and time-invariant) intramolecular hydrogen isotope distribution was attained for propane at three temperatures, 30 °C, 100 °C and 200 °C; these data serve as an initial experimental calibration of a new position-specific thermometer with a temperature sensitivity of 0.25‰ per °C at 100 °C. We use this calibration to test the validity of prior published theoretical predictions. Comparison of data with models suggest the most sophisticated of these discrepant models (Webb and Miller, 2014) is most accurate; this conclusion implies that there is a combined experimental and theoretical foundation for an ‘absolute reference frame’ for position-specific H isotope analysis of propane, following principles previously used for clumped isotope analysis of CO_2, CH_4 and O_2 (Eiler and Schauble, 2004; Yeung et al., 2014; Stolper et al., 2014)

    Cutaneous C-polymodal fibers lacking TRPV1 are sensitized to heat following inflammation, but fail to drive heat hyperalgesia in the absence of TPV1 containing C-heat fibers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have shown that the TRPV1 ion channel plays a critical role in the development of heat hyperalgesia after inflammation, as inflamed TRPV1-/- mice develop mechanical allodynia but fail to develop thermal hyperalgesia. In order to further investigate the role of TRPV1, we have used an ex vivo skin/nerve/DRG preparation to examine the effects of CFA-induced-inflammation on the response properties of TRPV1-positive and TRPV1-negative cutaneous nociceptors.</p> <p>Results</p> <p>In wildtype mice we found that polymodal C-fibers (CPMs) lacking TRPV1 were sensitized to heat within a day after CFA injection. This sensitization included both a drop in average heat threshold and an increase in firing rate to a heat ramp applied to the skin. No changes were observed in the mechanical response properties of these cells. Conversely, TRPV1-positive mechanically insensitive, heat sensitive fibers (CHs) were not sensitized following inflammation. However, results suggested that some of these fibers may have gained mechanical sensitivity and that some previous silent fibers gained heat sensitivity. In mice lacking TRPV1, inflammation only decreased heat threshold of CPMs but did not sensitize their responses to the heat ramp. No CH-fibers could be identified in naïve nor inflamed TRPV1-/- mice.</p> <p>Conclusions</p> <p>Results obtained here suggest that increased heat sensitivity in TRPV1-negative CPM fibers alone following inflammation is insufficient for the induction of heat hyperalgesia. On the other hand, TRPV1-positive CH fibers appear to play an essential role in this process that may include both afferent and efferent functions.</p

    Spectral Analysis of the Supreme Court

    Get PDF
    The focus of this paper is the linear algebraic framework in which the spectral analysis of voting data like that above is carried out. As we will show, this framework can be used to pinpoint voting coalitions in small voting bodies like the United States Supreme Court. Our goal is to show how simple ideas from linear algebra can come together to say something interesting about voting. And what could be more simple than where our story begins— with counting

    Presenting quantitative information about decision outcomes: a risk communication primer for patient decision aid developers

    Full text link
    Abstract Background Making evidence-based decisions often requires comparison of two or more options. Research-based evidence may exist which quantifies how likely the outcomes are for each option. Understanding these numeric estimates improves patients’ risk perception and leads to better informed decision making. This paper summarises current “best practices” in communication of evidence-based numeric outcomes for developers of patient decision aids (PtDAs) and other health communication tools. Method An expert consensus group of fourteen researchers from North America, Europe, and Australasia identified eleven main issues in risk communication. Two experts for each issue wrote a “state of the art” summary of best evidence, drawing on the PtDA, health, psychological, and broader scientific literature. In addition, commonly used terms were defined and a set of guiding principles and key messages derived from the results. Results The eleven key components of risk communication were: 1) Presenting the chance an event will occur; 2) Presenting changes in numeric outcomes; 3) Outcome estimates for test and screening decisions; 4) Numeric estimates in context and with evaluative labels; 5) Conveying uncertainty; 6) Visual formats; 7) Tailoring estimates; 8) Formats for understanding outcomes over time; 9) Narrative methods for conveying the chance of an event; 10) Important skills for understanding numerical estimates; and 11) Interactive web-based formats. Guiding principles from the evidence summaries advise that risk communication formats should reflect the task required of the user, should always define a relevant reference class (i.e., denominator) over time, should aim to use a consistent format throughout documents, should avoid “1 in x” formats and variable denominators, consider the magnitude of numbers used and the possibility of format bias, and should take into account the numeracy and graph literacy of the audience. Conclusion A substantial and rapidly expanding evidence base exists for risk communication. Developers of tools to facilitate evidence-based decision making should apply these principles to improve the quality of risk communication in practice.http://deepblue.lib.umich.edu/bitstream/2027.42/116070/1/12911_2013_Article_751.pd

    The Grizzly, September 18, 1981

    Get PDF
    Thomas P. Glassmoyer Elected Board President • APO Retains Highest GPA Last Spring • Chemistry, Economics, History and English Departments Receive New Faculty • Forum Programs Now \u27til Christmas • Editorial: Just Like the Good Old Days? • Message From the President: Play an Active Part • Evening in Photography Offered • Evening School Expands Computer Program • New Staff Appointments • Dr. Schultze Represents UC in Conference • UC Buying Up Main Street: New Off-Campus Housing • Anarchy in America: Let\u27s Kill All the Lawyers • Decatur Follows Shakespeare to Germany • Electric Factory Does it Again • IFC Getting it All Together • USGA Notes • Six New Faculty • Improving Relationships and Self-Image Workshop • Lacrosse Club Announces Fall Season • Gridders Kick Off \u2781 Season With Victory • Field Hockey Looking Good • Cross Country Team Off to Fast Starthttps://digitalcommons.ursinus.edu/grizzlynews/1060/thumbnail.jp

    Law professors want hearing, vote on Garland

    Get PDF
    Dear Senator Fischer and Senator Sasse, We write this as citizens, but we all teach at the University of Nebraska College of Law. We hold different political viewpoints and disagree frequentIy with each other on political and legal issues. As law professors, however, we share a deep commitment to the rule of law and an impartial judiciary. We therefore urge you to hold confirmation hearings and a vote on President Obama\u27s Supreme Court nominee, Chief Judge Merrick B. Garland

    Position-Specific Hydrogen Isotope Equilibrium in Propane

    Get PDF
    Intramolecular isotope distributions can constrain source attribution, mechanisms of formation and destruction, and temperature-time histories of molecules. In this study, we explore the D/H fractionation between central (-CH_2-) and terminal (-CH_3) positions of propane (C_3H_8)- a percent level component of natural gases. The temperature dependenceof position-specific D/H fractionation of propane could potentially work as a geo-thermometer for natural gas systems, and a forensic identifier of specific thermogenic sources of atmospheric or aquatic emissions. Moreover, kinetically controlled departures from temperature dependent equilibrium might constrain mechanisms of thermogenic production, or provide indicators of biological or photochemical destruction. We developed a method to measure position-specific D/H differences of propane with high-resolution gas source mass spectrometry. We performed laboratory exchange experiments to study the exchange ratesfor both terminal and central positions, and used catalysts to drive the hydrogen isotopedistribution of propane to thermodynamic equilibrium. Experimental results demonstrate that D/H exchange between propane and water happens easily in the presence of either Pd catalyst or Ni catalyst. Exchange rates are similar between the two positions catalyzed by Pd. However, the central position exchanges 2.2 times faster than the terminal position in the presence of Ni catalyst. At 200 °C in the presence of Pd catalyst, the e-folding time of propane-water exchange is 20 days and of homogeneous exchange (i.e., equilibrium between central and terminal positions) is 28 min. An equilibrated (bracketed and time-invariant) intramolecular hydrogen isotope distribution was attained for propane at three temperatures, 30 °C, 100 °C and 200 °C; these data serve as an initial experimental calibration of a new position-specific thermometer with a temperature sensitivity of 0.25‰ per °C at 100 °C. We use this calibration to test the validity of prior published theoretical predictions. Comparison of data with models suggest the most sophisticated of these discrepant models (Webb and Miller, 2014) is most accurate; this conclusion implies that there is a combined experimental and theoretical foundation for an ‘absolute reference frame’ for position-specific H isotope analysis of propane, following principles previously used for clumped isotope analysis of CO_2, CH_4 and O_2 (Eiler and Schauble, 2004; Yeung et al., 2014; Stolper et al., 2014)

    Deep and Frequent Phenotyping study protocol: an observational study in prodromal Alzheimer's disease.

    Get PDF
    INTRODUCTION: Recent failures of potential novel therapeutics for Alzheimer's disease (AD) have prompted a drive towards clinical studies in prodromal or preclinical states. However, carrying out clinical trials in early disease stages is extremely challenging-a key reason being the unfeasibility of using classical outcome measures of dementia trials (eg, conversion to dementia) and the lack of validated surrogate measures so early in the disease process. The Deep and Frequent Phenotyping (DFP) study aims to resolve this issue by identifying a set of markers acting as indicators of disease progression in the prodromal phase of disease that could be used as indicative outcome measures in proof-of-concept trials. METHODS AND ANALYSIS: The DFP study is a repeated measures observational study where participants will be recruited through existing parent cohorts, research interested lists/databases, advertisements and memory clinics. Repeated measures of both established (cognition, positron emission tomography (PET) imaging or cerebrospinal fluid (CSF) markers of pathology, structural MRI markers of neurodegeneration) and experimental modalities (functional MRI, magnetoencephalography and/or electroencephalography, gait measurement, ophthalmological and continuous smartphone-based cognitive and other assessments together with experimental CSF, blood, tear and saliva biomarkers) will be performed. We will be recruiting male and female participants aged >60 years with prodromal AD, defined as absence of dementia but with evidence of cognitive impairment together with AD pathology as assessed using PET imaging or CSF biomarkers. Control participants without evidence of AD pathology will be included at a 1:4 ratio. ETHICS AND DISSEMINATION: The study gained favourable ethical opinion from the South Central-Oxford B NHS Research Ethics Committee (REC reference 17/SC/0315; approved on 18 August 2017; amendment 13 February 2018). Data will be shared with the scientific community no more than 1 year following completion of study and data assembly.NIH
    corecore