20 research outputs found

    Characterizing Pulmonary Function Test Changes for Patients With Lung Cancer Treated on a 2-Institution, 4-Dimensional Computed Tomography-Ventilation Functional Avoidance Prospective Clinical Trial

    Get PDF
    Purpose: Four-dimensional computed tomography (4DCT)-ventilation-based functional avoidance uses 4DCT images to generate plans that avoid functional regions of the lung with the goal of reducing pulmonary toxic effects. A phase 2, multicenter, prospective study was completed to evaluate 4DCT-ventilation functional avoidance radiation therapy. The purpose of this study was to report the results for pretreatment to posttreatment pulmonary function test (PFT) changes for patients treated with functional avoidance radiation therapy. Methods and materials: Patients with locally advanced lung cancer receiving chemoradiation were accrued. Functional avoidance plans based on 4DCT-ventilation images were generated. PFTs were obtained at baseline and 3 months after chemoradiation. Differences for PFT metrics are reported, including diffusing capacity for carbon monoxide (DLCO), forced expiratory volume in 1 second (FEV1), and forced vital capacity (FVC). PFT metrics were compared for patients who did and did not experience grade 2 or higher pneumonitis. Results: Fifty-six patients enrolled on the study had baseline and posttreatment PFTs evaluable for analysis. The mean change in DLCO, FEV1, and FVC was -11.6% ± 14.2%, -5.6% ± 16.9%, and -9.0% ± 20.1%, respectively. The mean change in DLCO was -15.4% ± 14.4% for patients with grade 2 or higher radiation pneumonitis and -10.8% ± 14.1% for patients with grade \u3c2 radiation pneumonitis (P = .37). The mean change in FEV1 was -14.3% ± 22.1% for patients with grade 2 or higher radiation pneumonitis and -3.9% ± 15.4% for patients with grade \u3c2 radiation pneumonitis (P = .09). Conclusions: The current work is the first to quantitatively characterize PFT changes for patients with lung cancer treated on a prospective functional avoidance radiation therapy study. In comparison with patients treated with standard thoracic radiation planning, the data qualitatively show that functional avoidance resulted in less of a decline in DLCO and FEV1. The presented data can help elucidate the potential pulmonary function improvement with functional avoidance radiation therapy

    CyberKnife for hilar lung tumors: report of clinical response and toxicity

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To report clinical efficacy and toxicity of fractionated CyberKnife radiosurgery for the treatment of hilar lung tumors.</p> <p>Methods</p> <p>Patients presenting with primary and metastatic hilar lung tumors, treated using the CyberKnife system with Synchrony fiducial tracking technology, were retrospectively reviewed. Hilar location was defined as abutting or invading a mainstem bronchus. Fiducial markers were implanted by conventional bronchoscopy within or adjacent to tumors to serve as targeting references. A prescribed dose of 30 to 40 Gy to the gross tumor volume (GTV) was delivered in 5 fractions. Clinical examination and PET/CT imaging were performed at 3 to 6-month follow-up intervals.</p> <p>Results</p> <p>Twenty patients were accrued over a 4 year period. Three had primary hilar lung tumors and 17 had hilar lung metastases. The median GTV was 73 cc (range 23-324 cc). The median dose to the GTV was 35 Gy (range, 30 - 40 Gy), delivered in 5 fractions over 5 to 8 days (median, 6 days). The resulting mean maximum point doses delivered to the esophagus and mainstem bronchus were 25 Gy (range, 11 - 39 Gy) and 42 Gy (range, 30 - 49 Gy), respectively. Of the 17 evaluable patients with 3 - 6 month follow-up, 4 patients had a partial response and 13 patients had stable disease. AAT t a median follow-up of 10 months, the 1-year Kaplan-Meier local control and overall survival estimates were 63% and 54%, respectively. Toxicities included one patient experiencing grade II radiation esophagitis and one patient experiencing grade III radiation pneumonitis. One patient with gross endobronchial tumor within the mainstem bronchus developed a bronchial fistula and died after receiving a maximum bronchus dose of 49 Gy.</p> <p>Conclusion</p> <p>CyberKnife radiosurgery is an effective palliative treatment option for hilar lung tumors, but local control is poor at one year. Maximum point doses to critical structures may be used as a guide for limiting toxicities. Preliminary results suggest that dose escalation alone is unlikely to enhance the therapeutic ratio of hilar lung tumors and novel approaches, such as further defining the patient population or employing the use of radiation sensitizers, should be investigated.</p

    The TRKB agonist, 7,8-dihydroxyflavone, impairs fracture healing in mice

    No full text
    OBJECTIVES: To study the effects of the selective TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF), on fracture healing in mice and on an osteoprogenitor cell line, Kusa4b10, in vitro. METHODS: Mice received unilateral closed mid-shaft tibial fractures and treated for two weeks with vehicle or 5 mg/kg/day DHF and euthanised at 28 days post-fracture. Calluses were analysed by micro-computed tomography (µCT) and three-point bending biomechanical test. Kusa4b10 cells were cultured with 50nM of 7,8-DHF or vehicle for 3-, 7-, 14-days for RT-PCR, and 21 days for mineralization. RESULTS: µCT found 7,8-DHF calluses had decreased tissue volume (p=0.042), mean polar moment of inertia (p = 0.004), and mean cross-sectional area (p=0.042) compared to controls. At 28 days biomechanical analyses showed 7,8-DHF treatment decreased peak force (p=0.011) and stiffness per unit area (p=0.012). 7,8-DHF treatment did not change Kusa4b10 gene expression of Runx2 and alkaline phosphatase at all time points, nor mineralization. CONCLUSIONS: 7,8-DHF treatment had a negative impact on fracture healing at 28 days post-fracture via an unknown mechanism. 7,8-DHF may have had a central role in impairing fracture healing

    Meta-analysis of Grainyhead-like dependent transcriptional networks:A roadmap for identifying novel conserved genetic pathways

    Get PDF
    : The Drosophila grainyhead (grh) and vertebrate Grainyhead-like (Grhl) transcription factors are among the most critical genes for epithelial development, maintenance and homeostasis, and are remarkably well conserved from fungi to humans. Mutations affecting grh/Grhl function lead to a myriad of developmental and adult onset epithelial disease, such as aberrant skin barrier formation, facial/palatal clefting, impaired neural tube closure, age-related hearing loss, ectodermal dysplasia, and importantly, cancers of epithelial origin. Recently, mutations in the family member GRHL3 have been shown to lead to both syndromic and non-syndromic facial and palatal clefting in humans, particularly the genetic disorder Van Der Woude Syndrome (VWS), as well as spina bifida, whereas mutations in mammalian Grhl2 lead to exencephaly and facial clefting. As transcription factors, Grhl proteins bind to and activate (or repress) a substantial number of target genes that regulate and drive a cascade of transcriptional networks. A multitude of large-scale datasets have been generated to explore the grh/Grhl-dependent transcriptome, following ablation or mis-regulation of grh/Grhl-function. Here, we have performed a meta-analysis of all 41 currently published grh and Grhl RNA-SEQ, and microarray datasets, in order to identify and characterise the transcriptional networks controlled by grh/Grhl genes across disparate biological contexts. Moreover, we have also cross-referenced our results with published ChIP and ChIP-SEQ datasets, in order to determine which of the critical effector genes are likely to be direct grh/Grhl targets, based on genomic occupancy by grh/Grhl genes. Lastly, to interrogate the predictive strength of our approach, we experimentally validated the expression of the top 10 candidate grhl target genes in epithelial development, in a zebrafish model lacking grhl3, and found that orthologues of seven of these (cldn23, ppl, prom2, ocln, slc6a19, aldh1a3, and sod3) were significantly down-regulated at 48 hours post-fertilisation. Therefore, our study provides a strong predictive resource for the identification of putative grh/grhl effector target genes

    Treadmill Exercise before and during Pregnancy Improves Bone Deficits in Pregnant Growth Restricted Rats without the Exacerbated Effects of High Fat Diet

    Get PDF
    Growth restriction programs adult bone deficits and increases the risk of obesity, which may be exacerbated during pregnancy. We aimed to determine if high-fat feeding could exacerbate the bone deficits in pregnant growth restricted dams, and whether treadmill exercise would attenuate these deficits. Uteroplacental insufficiency was induced on embryonic day 18 (E18) in Wistar Kyoto (WKY) rats using bilateral uterine vessel ligation (restricted) or sham (control) surgery. The F1 females consumed a standard or high-fat (HFD) diet from 5 weeks, commenced treadmill exercise at 16 weeks, and they were mated at 20 weeks. Femora and plasma from the pregnant dams were collected at post-mortem (E20) for peripheral quantitative computed tomography (pQCT), mechanical testing, histomorphometry, and plasma analysis. Sedentary restricted females had bone deficits compared to the controls, irrespective of diet, where such deficits were prevented with exercise. Osteocalcin increased in the sedentary restricted females compared to the control females. In the sedentary HFD females, osteocalcin was reduced and CTX-1 was increased, with increased peak force and bending stress compared to the chow females. Exercise that was initiated before and continued during pregnancy prevented bone deficits in the dams born growth restricted, whereas a HFD consumption had minimal bone effects. These findings further highlight the beneficial effects of exercise for individuals at risk of bone deficits
    corecore