81 research outputs found

    Southeast Florida Shallow-Water Habitat Mapping & Coral Reef Community Characterization

    Get PDF
    Baseline mapping and quantitative assessment data are required prior to future permitted or un-permitted impacts in order to determine the pre-existing state of the benthic resources; therefore, it is imperative that these data be collected on the ecologically sensitive and economically valuable shallow-water coral reef habitats in southeast Florida. In southeast Florida, the nearshore reef habitats are most vulnerable to coastal construction activities and other anthropogenic impacts, therefore these habitats were the focus for this study. The study goals were to provide a spatially appropriate map of increased resolution and a regional quantitative characterization of nearshore benthic resources to evaluate differences in benthic communities between habitats and with latitude for the southeast Florida region of the Florida Reef Tract. This study is a snapshot habitat characterization providing the current status of shallow-water coral reef community composition. Additionally, these data can be used to reduce un-permitted impacts by informing marine zoning efforts and aid in the creation of new no-anchor zones. Detailed 1ft resolution overlapping aerial photographs were collected for the Nearshore Ridge Complex (NRC) and Inner Reef from Key Biscayne to Hillsboro Inlet, 68.5km of coastline by PhotoScience, Inc. on March 8, 2013. The imagery and recent bathymetry were visually interpreted into benthic habitat maps. Quantitative groundtruthing of 265 targeted and randomized sites was conducted between April and June 2014. Five 1km wide cross-shelf corridors were placed as evenly as possible across the mapped space while maintaining consistent habitat types and amounts between corridors and avoiding any major anthropogenic influences like shipping channels and proximity to inlets and outfalls. Survey site locations were stratified across three main habitats within each corridor: Colonized Pavement-Shallow, Ridge-Shallow, and Linear Reef-Inner. Percent cover data at each site was collected. Additionally, species, colony size (length, width, height), percent mortality, condition (pale or bleached), and presence of disease was recorded for stony corals. Gorgonians were categorized by morphology (rod, plume, fan) and counted in four size classes (4-10, 11-25, 26-50, and \u3e50cm). Xestospongia muta and Cliona spp. were also counted. Then an accuracy assessment was performed where drop camera video with GPS data were collected at 494 locations randomly stratified across all habitat types. The overall accuracy was 97.9% at the Major Habitat level. Of the 172.73km² seafloor mapped, the polygon totals indicated 41.34% was Sand, 47.07% was Coral Reef and Colonized Pavement, 9.35% was Seagrass, and 2.25% was Other Delineations. These totals are estimates due to some habitats having a large mix of sand within. Three habitat types dominated the mapped hardbottom area. The largest was Colonized Pavement (38.36km²), followed by Ridge-Shallow (25.52km²), and Linear Reef-Inner (14.99km²). These comprised 97% of the hardbottom habitats. Seagrass accounted for 9.35% of the map and was solely contained south of Government Cut. Sand comprised 41.34% of the map and Other Delineations accounted for 2.25%. The clear, high-resolution images enabled the delineation of thirty-five dense Acropora cervicornis patches. Some of these corresponded to known locations of dense patches. These are the largest dense patches in the continental United States. Using aerial photography delineations area estimates, the seven patches near the known existing locations totaled approximately 46,000m² whereas the 28 newly confirmed areas exceed 110,000m². Dense Acropora cervicornis comprised 1% of the mapped hardbottom habitats. Significant differences in percent benthic cover between habitats occurred in all corridors, however some comparisons were stronger than others. Corridor 1 exhibited clear differences between the colonized pavement and inner reef sites due to the high percentages of seagrass on the colonized pavement that did not occur on the Inner Reef sites (nor any other habitat in the region). Corridor 2 showed much weaker differences between habitat types, however the colonized pavement sites were significantly distinct from the inner reef and ridge sites due to the comparatively high percentage of sand on the colonized pavement versus the inner reef and ridge. Corridor 3 ridge was significantly distinct from the colonized pavement and inner reef sites mostly due to lower percentage of Palythoa spp. on the ridge. Corridor 4 inner reef sites were significantly different from the others driven by much higher percentage of macroalgae and higher Palythoa spp. Corridor 5 exhibited significant differences between all habitat types. Inner reef sites had higher percentages of Palythoa spp., gorgonians, and sponges than any other habitat. Colonized pavement sites had the lowest percentages of gorgonians and Palythoa spp. while having the highest percentages of sand. Comparisons of benthic cover percentages between all sites in a given habitat type were conducted to evaluate latitudinal community differences. Among colonized pavement sites, Corridor 1 was significantly different from all other corridors due to the presence of seagrass which only occurred in Corridor 1 colonized pavement. Corridor 5 was also significantly distinct from all other corridors due to a low percentage of gorgonians, stony corals, and Palythoa spp. with a high percentage of turf algae. The ridge sites comparisons showed distinct clustering of corridors 2, 3, and 5 in the MDS indicating that there are latitudinal differences in benthic cover in the ridge habitat. The main dissimilarity contributors in corridor 2 were lower percentages of palythoa spp. and macroalgae than corridors 3 and 5 and higher percentages of gorgonians and stony corals than corridor 5. Corridor 3 had higher percentages of macroalgae, stony corals, and gorgonians than corridor 5. The inner reef sites also exhibited latitudinal differences in benthic cover. Corridors 1 and 5 separated out from the other corridors and each other. The main cover classes driving the clustering of corridor 1 sites were high percentages of gorgonians and Palythoa spp, while the main contributor to the corridor 4 cluster was high macroalgae percentages in that corridor. A total of 4,568 stony coral colonies were identified, counted, and measured. Twenty-two species were found, but Porites astreoides (29.7%), Siderastrea siderea (17.5%), and Acropora cervicornis (10.3%) comprised 57.5% of the total number of stony corals measured in this study. The largest coral measured in the study was a Siderastrea siderea located in corridor 4 which measured 225 cm long, 200 cm wide, 140 cm tall and an estimated 4.1 m² of live tissue. Stony coral density pooled for the entire surveyed area of 4,200m² was 1.09 corals/m². Mean coral density was lowest in the colonized pavement sites and highest in the inner reef sites, however this also varied by corridor. The colonized pavement coral density in Corridors 1 and 5 was lowest and highest in Corridors 3 and 4. Coral density on ridge habitat had a similar pattern to colonized pavement with corridor 3 having the highest density. Conversely coral density on the inner reef was highest in corridor 1 and corridor 4. Acropora cervicornis was found in higher densities than S. siderea on the colonized pavement but it only occurred in corridors 3 and 4. It was also found in higher density on ridge habitat except for corridor 5. Of the 471 A. cervicornis colonies counted, only 5.3% occurred on the inner reef. Two hundred and thirty-five (49.9%) were found in the colonized pavement and 211 (44.8%) at the ridge sites. The mean number of coral species (richness) varied by corridor and habitat. Colonized pavement sites had the lowest richness and it was highest on inner reef. Mean richness also varied by corridor within habitats. Among the colonized pavement sites, corridor 3 and corridor 4 had the highest mean richness and corridor 5 the lowest. Similarly, among the ridge site, mean coral richness was highest in corridor 3 and lowest in corridor 5. Mean richness among inner reef sites were not very different however corridor 1 was significantly higher than corridor 3. A total of 30,076 gorgonians were counted, classified by morpho-type (Fan, Plume, Rod), and binned into size classes. Rods were the most abundant comprising almost 72% of the total number counted and plumes were second-most comprising 24% of the total. This varied by corridor and habitat. With all size classes combined, fans were lowest on the colonized pavement and highest on the ridge. Plumes were higher on the inner reef than the colonized pavement and ridge. Conversely rods were lower on the inner reef than the colonized pavement and ridge. Gorgonians also varied within habitat types by corridor. In colonized pavement, fans were highest in corridors 3 and 4 whereas plumes were more abundant in the southern corridors. Rods were dominantly abundant throughout the colonized pavement except for corridor 5 where they were conspicuously absent. In the ridge habitat, fans varied among corridors without a clear latitudinal pattern. Plumes were more abundant in the southern corridors, while rods were dominantly abundant throughout. The inner reef habitats generally had a higher abundance of plumes and a more even ratio of rod and plume abundance throughout all corridors. Plumes were the most abundant type in corridor 1, but were also high in corridors 3 and 5. Xestospongia muta colonies were predominantly found at the inner reef sites. Of the 262 total colonies counted, 87.7% were at inner reef sites. Densities were lower than gorgonians and stony corals throughout the study. Mean X. muta abundance varied between corridors. In colonized pavement and ridge habitats, X. muta predominantly occurred on corridor 4 however mean abundance was very low. At the inner reef sites, X. muta was much lower in corridor 1 than all other corridors, which did not significantly vary. This study elucidated new data on the extent of the Endangered Species Act threatened coral species, Acropora cervicornis. Only approximately 30% of the discovered dense patches were identified as previously known and the total regional area of A. cervicornisdense patches is now estimated at 156,000 m². The condition of the coral in these patches cannot be surmised from the images. Additionally, the polygons depicted in the habitat map are likely under-representative of the shape and sizes of these patches due to their fuzzy boundaries. A detailed study to map their boundaries and characterize their condition is needed to properly inventory these patches and their condition. Furthermore, the only way to fully understand if the net amount is increasing is to investigate it on a regional level. Previous imagery must be identified and used to determine the timing of when these patches came into existence. Unfortunately no consistent data sets have been identified that can be used for this purpose at this time. A compilation of local imagery has been helpful in some cases. It is recommended that a regional set of imagery be repeatedly collected in the future to elucidate the dynamics of dense patches of A. cervicornis and document the current extent of nearshore resources. This is especially important after large storm events. This study has expanded the present knowledge on the amount, location, and species type of ecologically important large coral colonies. Although smaller than the minimum mapping unit for this study (and thus not in this study’s scope and funded separately), 187 blips in the LIDAR associated with dark specs in the imagery were identified and a portion investigated. Of the 53 that were visited, 47 were stony corals estimated between 2 and 5 m in diameter. Twenty-three (43%) were alive in various conditions. These were predominantly Orbicella faveolata (20), but 2 were Siderastrea siderea and one was a Montastrea cavernosa. Corals of this size are likely to be hundreds of years old, meaning they have persisted through the multitude of anthropogenic impacts that have occurred in the region. Large coral colonies are more fecund, giving an exponentially increased amount of reproductive output making these colonies particularly important in the restoration of the reef system. It is recommended that a host of important studies be conducted to understand the full extent, size, condition of these large, resilient corals and to monitor them through time, investigate their reproduction and genetic diversity, and perhaps use them to help propagate naturally resilient corals in restoration efforts

    Southeast Florida Large Coral Assessment 2015

    Get PDF
    The 2013 nearshore mapping project conducted by Walker and Klug expanded the previous knowledge on the amount, location, and species type of ecologically important large (\u3e2 m) coral colonies in southeast Florida. They discovered over 110 previously undocumented large corals of which 60 were dead and 50 were still alive; 40 of the living corals were larger than 2 m wide and up to 5 m in diameter. Because these corals are the largest and oldest organisms on our reefs, they deserve special attention. Currently there is unprecedented disease and bleaching in the northern portion of the Florida Reef Tract. It is imperative that the large coral baseline condition is documented to understand the present condition of the large corals in southeast Florida. Understanding how the coral populations are affected by this outbreak and identifying which individuals were resilient enough to recover is critical to the management of the SE FL coral reef ecosystem therefore the objective of this project was to achieve recommendation four from Walker and Klug (2014): conduct a full inventory study to understand the extent, size, condition of the large (\u3e 2 m diameter) corals. Live corals greater than 2 m diameter identified during reconnaissance were assessed by SCUBA divers. High resolution photographs and video were collected of the coral as a permanent record of its condition. Photographs were taken systematically at each of the four main compass headings (north, east, south, and west) and from overhead. In cases where the coral was too large or the visibility was poor, multiple pictures of the coral were taken at a closer distance. Divers then estimated the percent live tissue cover and percent recent and old dead skeleton remaining, percentage of bleached tissue, percentage of diseased tissue, and the number of tissue isolates. Each coral was then measured using a rigid meter stick was used to measure height, the linear distance along the longest axis, and the widest axis perpendicular to the first axis and a measuring tape to measure the distance over the surface of the coral. In areas with multiple large corals, a Garmin 76csx GPS in an underwater housing with a floating antenna was used to collect the coordinate of each coral. Surveys were conducted over eleven days between September and November 2015. Additional reconnaissance surveys were conducted to assess sixty-two new targets that were not previously visited due to poor visibility during Government Cut channel dredging. A total of 115 corals were inventoried and measured. See Appendix 1 for images and data collected on each coral. The majority of corals were Orbicella faveolata (78.2%), followed by Montastrea cavernosa, Siderastrea siderea, Colpophyllia natans, Orbicella annularis, and Pseudodiploria strigosa. Corals were found between 4.6 m and 8.8 m depth predominantly in the nearshore colonized pavement and shallow ridge habitats at an average depth of 6.4 m. Colonies were evenly distributed between Miami-Broward and Biscayne Coral Reef Ecosystem Regions. A few corals were spread out but most were clustered into smaller areas. There was no apparent pattern of size with latitude. Eight corals, all O. faveolata, were measured larger than 4 m and spanned from Key Biscayne to Hollywood. The two largest corals, which measured 5.6 m long, were located off Key Biscayne and contained 50% and 70% live tissue. One other coral measured 5.1 m long located near Bal Harbor and had 30% live tissue. Almost half of all large corals did not show signs of stress from bleaching or disease, however all of the M. cavernosa, O. annularis, and C. natans had either or both conditions. Thirty-seven percent of all corals had some recent mortality, including all four O. annularis and C. natans colonies and about half of the M. cavernosa, S. siderea, and P. strigosa colonies. Twenty-three percent of all corals had some bleaching, but M. cavernosa appeared to be affected more than other species. There were many smaller M. cavernosa colonies not captured in this study with extensive bleaching, especially in the Biscayne region. Eight percent of all colonies had both bleaching and disease. The diseases visually observed in this study were white plague, black band, dark spot and possibly Caribbean yellow band. Coral diseases are very difficult to identify precisely in the field and require histological and genetic analyses to be conducted. Changes in condition were noted between the reconnaissance and the surveys. In 2015, bleaching recovery was noted within 41 days on recently surveyed corals near Key Biscayne. This coincided with a period of noticeable cooler water temperatures and is likely indicative that the 2015 bleaching event was subsiding accordingly. Conversely, the halting of disease progression was not noted in our surveys. For example white plague disease on a C. natans had killed significant tissue over 27 days. The condition and fate of that colony is presently unknown. Changes in coral condition and live tissue cover were noted between 2014 and 2015. In 2015 corals were found completely bleached that were not bleached in 2014. Colonies were also found fully and partially bleached in 2014 and 2015 where portions of the partially bleached areas were bleached in both years and portions were not. The timing of these changes is worth noting because in south Florida corals usually bleach from heat stress later in the summer around August and September. Corals originally surveyed in June 2014 may have still bleached in 2014, recovered, and bleached again in 2015. Without regular monitoring this cannot be determined. Disease was not noted to occur in corals between years through our initial photo and video documentation evaluations but it was observed in 2015 when not present in 2014. Percent mortality was high in all corals combined. When including all of the dead corals found in the reconnaissance, 100% mortality was the highest (34%). However the partial mortality percentages were also high with 43% of corals between 25% and 99% partial mortality and 31% at least half dead. Twenty-three percent were less than one quarter dead including 5% that were more than 90% living. This study documented baseline conditions of the largest and oldest corals of the southeast Florida reefs which are analogous to the “redwoods” of our nearshore community. In southeast FL, corals grow about 1 cm per year. Corals greater than 2 meters in diameter can be hundreds of years old. The largest corals in a population are the oldest and have exponentially more reproductive capacity than smaller ones, making them the most important demographic of their respective species. Their age indicates that they have persisted through the multitude of anthropogenic impacts and stressors that have occurred in the region since the western colonization of Florida. Their size also provides habitat for a diverse and abundant assemblage of fish. A large proportion of the large corals are in the relatively flat, nearshore habitats, and thus provide an oasis for many fish species. High partial mortality is an indicator of more stressed systems. We found 65% of large corals were either dead or had less than half of their live tissue remaining. The dead ones are difficult to assess as one must collect samples to identify the species and we do not know when they died. This would be valuable information because it would allow us to determine if the frequency of mortality in these corals is increasing through time. In other words conditions are more stressful today causing more frequent mortality. This can be determined by drilling the corals and determining their ages by comparing them to a reference coral. Assessing these corals through time is important. We can identify which events reduce their tissues, whether they recover from bleaching, the frequency of bleaching and disease for each coral and the total population, and how resilient they are to stress events. The overwhelming majority of these corals were O. faveolata, a reef-building species listed as threatened under the Endangered Species Act. These resilient corals might give clues to the ability of certain corals to recover from adversity and help in the restoration of the species across the reef tract. Further, large coral colonies are more fecund, giving an exponentially increased amount of reproductive output also making these colonies particularly important in the species’ recovery. A list of recommendations of work critical to the understanding and management of the Southeast Florida coral populations, especially for O. faveolata, which is threatened under the Endangered Species Act includes: (1) Spatial analysis of large coral distribution, (2) Regular assessments of the large live corals, (3) Identifying the dead coral species and timing of death, (4) Histology and reproductive study, (5) Genetic studies, and (6) Restoration

    Whither Judaism?

    Get PDF

    Typha (Cattail) Invasion in North American Wetlands: Biology, Regional Problems, Impacts, Ecosystem Services, and Management

    Get PDF
    Typha is an iconic wetland plant found worldwide. Hybridization and anthropogenic disturbances have resulted in large increases in Typha abundance in wetland ecosystems throughout North America at a cost to native floral and faunal biodiversity. As demonstrated by three regional case studies, Typha is capable of rapidly colonizing habitats and forming monodominant vegetation stands due to traits such as robust size, rapid growth rate, and rhizomatic expansion. Increased nutrient inputs into wetlands and altered hydrologic regimes are among the principal anthropogenic drivers of Typha invasion. Typha is associated with a wide range of negative ecological impacts to wetland and agricultural systems, but also is linked with a variety of ecosystem services such as bioremediation and provisioning of biomass, as well as an assortment of traditional cultural uses. Numerous physical, chemical, and hydrologic control methods are used to manage invasive Typha, but results are inconsistent and multiple methods and repeated treatments often are required. While this review focuses on invasive Typha in North America, the literature cited comes from research on Typha and other invasive species from around the world. As such, many of the underlying concepts in this review are relevant to invasive species in other wetland ecosystems worldwide

    Development and Preliminary Evaluation of a Multivariate Index Assay for Ovarian Cancer

    Get PDF
    BACKGROUND: Most women with a clinical presentation consistent with ovarian cancer have benign conditions. Therefore methods to distinguish women with ovarian cancer from those with benign conditions would be beneficial. We describe the development and preliminary evaluation of a serum-based multivariate assay for ovarian cancer. This hypothesis-driven study examined whether an informative pattern could be detected in stage I disease that persists through later stages. METHODOLOGY/PRINCIPAL FINDINGS: Sera, collected under uniform protocols from multiple institutions, representing 176 cases and 187 controls from women presenting for surgery were examined using high-throughput, multiplexed immunoassays. All stages and common subtypes of epithelial ovarian cancer, and the most common benign ovarian conditions were represented. A panel of 104 antigens, 44 autoimmune and 56 infectious disease markers were assayed and informative combinations identified. Using a training set of 91 stage I data sets, representing 61 individual samples, and an equivalent number of controls, an 11-analyte profile, composed of CA-125, CA 19-9, EGF-R, C-reactive protein, myoglobin, apolipoprotein A1, apolipoprotein CIII, MIP-1alpha, IL-6, IL-18 and tenascin C was identified and appears informative for all stages and common subtypes of ovarian cancer. Using a testing set of 245 samples, approximately twice the size of the model building set, the classifier had 91.3% sensitivity and 88.5% specificity. While these preliminary results are promising, further refinement and extensive validation of the classifier in a clinical trial is necessary to determine if the test has clinical value. CONCLUSIONS/SIGNIFICANCE: We describe a blood-based assay using 11 analytes that can distinguish women with ovarian cancer from those with benign conditions. Preliminary evaluation of the classifier suggests it has the potential to offer approximately 90% sensitivity and 90% specificity. While promising, the performance needs to be assessed in a blinded clinical validation study

    Comprehensive Serum Profiling for the Discovery of Epithelial Ovarian Cancer Biomarkers

    Get PDF
    FDA-cleared ovarian cancer biomarkers are limited to CA-125 and HE4 for monitoring and recurrence and OVA1, a multivariate panel consisting of CA-125 and four additional biomarkers, for referring patients to a specialist. Due to relatively poor performance of these tests, more accurate and broadly applicable biomarkers are needed. We evaluated the dysregulation of 259 candidate cancer markers in serum samples from 499 patients. Sera were collected prospectively at 11 monitored sites under a single well-defined protocol. All stages of ovarian cancer and common benign gynecological conditions were represented. To ensure consistency and comparability of biomarker comparisons, all measurements were performed on a single platform, at a single site, using a panel of rigorously calibrated, qualified, high-throughput, multiplexed immunoassays and all analyses were conducted using the same software. Each marker was evaluated independently for its ability to differentiate ovarian cancer from benign conditions. A total of 175 markers were dysregulated in the cancer samples. HE4 (AUC = 0.933) and CA-125 (AUC = 0.907) were the most informative biomarkers, followed by IL-2 receptor α, α1-antitrypsin, C-reactive protein, YKL-40, cellular fibronectin, CA-72-4 and prostasin (AUC>0.800). To improve the discrimination between cancer and benign conditions, a simple multivariate combination of markers was explored using logistic regression. When combined into a single panel, the nine most informative individual biomarkers yielded an AUC value of 0.950, significantly higher than obtained when combining the markers in the OVA1 panel (AUC 0.912). Additionally, at a threshold sensitivity of 90%, the combination of the top 9 markers gave 88.9% specificity compared to 63.4% specificity for the OVA1 markers. Although a blinded validation study has not yet been performed, these results indicate that alternative biomarker combinations might lead to significant improvements in the detection of ovarian cancer

    Relativism, Coherence, and the Problems of Philosophy *

    Get PDF
    The eventual topic of this paper is the perhaps grandiose question of whether we have any reason to think that philosophical problems can be solved. Philosophy has been around for quite some time, and its record is cause for pessimism: it is not, exactly, that there are no established results, but that what results there are, are negative (such-and-such is false, or won't work), or conditional (as Ernest Nagel used to say, "If we had ham, and if we had eggs, then we'd have ham and eggs"). 1 I hope in what follows first of all to explain the record. My explanation will naturally suggest a way of turning over a new leaf, and I will wrap up the paper by laying out that proposal and critically assessing its prospects. However, the approach to my topic will have to be roundabout. Along the way, I will detour to consider how the problems of philosophy can be * I'm grateful t

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≥ II, EF ≤35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    A RESPONSE TO TAMAR MEISELS

    No full text

    A Plea for Distinctions

    No full text
    INTRODUCTION: THE GOLDEN CALF OF DAVOS Davos, Switzerland, January 2003: the annual meeting of the World economic Forum. Indoors, about two thousand distinguished guests, including political leaders and chief executives of some of the world’s wealthiest corporations, are debating issues of global importance. Outdoors, a group of anti-globalization protestors who are engaging in street theater are captured on camera by the photographer Fabrice Coffrini. The picture features two masked figures,..
    corecore