4 research outputs found

    Conversion of Urine Protein–Creatinine Ratio or Urine Dipstick Protein to Urine Albumin–Creatinine Ratio for Use in Chronic Kidney Disease Screening and Prognosis

    Full text link
    Background: Although measuring albuminuria is the preferred method for defining and staging chronic kidney disease (CKD), total urine protein or dipstick protein is often measured instead.Objective: To develop equations for converting urine protein creatinine ratio (PCR) and dipstick protein to urine albumin creatinine ratio (ACR) and to test their diagnostic accuracy in CKD screening and staging.Design: Individual participant–based meta-analysis.Setting: 12 research and 21 clinical cohorts.Participants: 919 383 adults with same-day measures of ACR and PCR or dipstick protein.Measurements: Equations to convert urine PCR and dipstick protein to ACR were developed and tested for purposes of CKD screening (ACR ≥30 mg/g) and staging (stage A2: ACR of 30 to 299 mg/g; stage A3: ACR ≥300 mg/g).Results: Median ACR was 14 mg/g (25th to 75th percentile of cohorts, 5 to 25 mg/g). The association between PCR and ACR was inconsistent for PCR values less than 50 mg/g. For higher PCR values, the PCR conversion equations demonstrated moderate sensitivity (91%, 75%, and 87%) and specificity (87%, 89%, and 98%) for screening (ACR >30 mg/g) and classification into stages A2 and A3, respectively. Urine dipstick categories of trace or greater, trace to +, and ++ for screening for ACR values greater than 30 mg/g and classification into stages A2 and A3, respectively, had moderate sensitivity (62%, 36%, and 78%) and high specificity (88%, 88%, and 98%). For individual risk prediction, the estimated 2-year 4-variable kidney failure risk equation using predicted ACR from PCR had discrimination similar to that of using observed ACR.Limitation: Diverse methods of ACR and PCR quantification were used; measurements were not always performed in the same urine sample.Conclusion: Urine ACR is the preferred measure of albuminuria; however, if ACR is not available, predicted ACR from PCR or urine dipstick protein may help in CKD screening, staging, and prognosis.</div

    Development and Validation of Prediction Models of Adverse Kidney Outcomes in the Population With and Without Diabetes.

    Full text link
    ObjectiveTo predict adverse kidney outcomes for use in optimizing medical management and clinical trial design.Research design and methodsIn this meta-analysis of individual participant data, 43 cohorts (N = 1,621,817) from research studies, electronic medical records, and clinical trials with global representation were separated into development and validation cohorts. Models were developed and validated within strata of diabetes mellitus (presence or absence) and estimated glomerular filtration rate (eGFR; ≥60 or ResultsThere were 17,399 and 24,591 events in development and validation cohorts, respectively. Models predicting ≥40% eGFR decline or kidney failure incorporated age, sex, eGFR, albuminuria, systolic blood pressure, antihypertensive medication use, history of heart failure, coronary heart disease, atrial fibrillation, smoking status, and BMI, and, in those with diabetes, hemoglobin A1c, insulin use, and oral diabetes medication use. The median C-statistic was 0.774 (interquartile range [IQR] = 0.753, 0.782) in the diabetes and higher-eGFR validation cohorts; 0.769 (IQR = 0.758, 0.808) in the diabetes and lower-eGFR validation cohorts; 0.740 (IQR = 0.717, 0.763) in the no diabetes and higher-eGFR validation cohorts; and 0.750 (IQR = 0.731, 0.785) in the no diabetes and lower-eGFR validation cohorts. Incorporating the previous 2-year eGFR slope minimally improved model performance, and then only in the higher-eGFR cohorts.ConclusionsNovel prediction equations for a decline of ≥40% in eGFR can be applied successfully for use in the general population in persons with and without diabetes with higher or lower eGFR

    Estimated Glomerular Filtration Rate, Albuminuria, and Adverse Outcomes: An Individual-Participant Data Meta-Analysis

    Full text link
    Chronic kidney disease (low estimated glomerular filtration rate [eGFR] or albuminuria) affects approximately 14% of adults in the US.To evaluate associations of lower eGFR based on creatinine alone, lower eGFR based on creatinine combined with cystatin C, and more severe albuminuria with adverse kidney outcomes, cardiovascular outcomes, and other health outcomes.Individual-participant data meta-analysis of 27 503 140 individuals from 114 global cohorts (eGFR based on creatinine alone) and 720 736 individuals from 20 cohorts (eGFR based on creatinine and cystatin C) and 9 067 753 individuals from 114 cohorts (albuminuria) from 1980 to 2021.The Chronic Kidney Disease Epidemiology Collaboration 2021 equations for eGFR based on creatinine alone and eGFR based on creatinine and cystatin C; and albuminuria estimated as urine albumin to creatinine ratio (UACR).The risk of kidney failure requiring replacement therapy, all-cause mortality, cardiovascular mortality, acute kidney injury, any hospitalization, coronary heart disease, stroke, heart failure, atrial fibrillation, and peripheral artery disease. The analyses were performed within each cohort and summarized with random-effects meta-analyses.Within the population using eGFR based on creatinine alone (mean age, 54 years [SD, 17 years]; 51% were women; mean follow-up time, 4.8 years [SD, 3.3 years]), the mean eGFR was 90 mL/min/1.73 m2 (SD, 22 mL/min/1.73 m2) and the median UACR was 11 mg/g (IQR, 8-16 mg/g). Within the population using eGFR based on creatinine and cystatin C (mean age, 59 years [SD, 12 years]; 53% were women; mean follow-up time, 10.8 years [SD, 4.1 years]), the mean eGFR was 88 mL/min/1.73 m2 (SD, 22 mL/min/1.73 m2) and the median UACR was 9 mg/g (IQR, 6-18 mg/g). Lower eGFR (whether based on creatinine alone or based on creatinine and cystatin C) and higher UACR were each significantly associated with higher risk for each of the 10 adverse outcomes, including those in the mildest categories of chronic kidney disease. For example, among people with a UACR less than 10 mg/g, an eGFR of 45 to 59 mL/min/1.73 m2 based on creatinine alone was associated with significantly higher hospitalization rates compared with an eGFR of 90 to 104 mL/min/1.73 m2 (adjusted hazard ratio, 1.3 [95% CI, 1.2-1.3]; 161 vs 79 events per 1000 person-years; excess absolute risk, 22 events per 1000 person-years [95% CI, 19-25 events per 1000 person-years]).In this retrospective analysis of 114 cohorts, lower eGFR based on creatinine alone, lower eGFR based on creatinine and cystatin C, and more severe UACR were each associated with increased rates of 10 adverse outcomes, including adverse kidney outcomes, cardiovascular diseases, and hospitalizations. Importance Objective Design, setting, and participants Exposures Main outcomes and measures Results Conclusions and relevance</h4

    Adiposity and risk of decline in glomerular filtration rate: meta-analysis of individual participant data in a global consortium

    No full text
    OBJECTIVE:To evaluate the associations between adiposity measures (body mass index, waist circumference, and waist-to-height ratio) with decline in glomerular filtration rate (GFR) and with all cause mortality. DESIGN:Individual participant data meta-analysis. SETTING:Cohorts from 40 countries with data collected between 1970 and 2017. PARTICIPANTS:Adults in 39 general population cohorts (n=5 459 014), of which 21 (n=594 496) had data on waist circumference; six cohorts with high cardiovascular risk (n=84 417); and 18 cohorts with chronic kidney disease (n=91 607). MAIN OUTCOME MEASURES:GFR decline (estimated GFR decline ≥40%, initiation of kidney replacement therapy or estimated GFR <10 mL/min/1.73 m2) and all cause mortality. RESULTS:Over a mean follow-up of eight years, 246 607 (5.6%) individuals in the general population cohorts had GFR decline (18 118 (0.4%) end stage kidney disease events) and 782 329 (14.7%) died. Adjusting for age, sex, race, and current smoking, the hazard ratios for GFR decline comparing body mass indices 30, 35, and 40 with body mass index 25 were 1.18 (95% confidence interval 1.09 to 1.27), 1.69 (1.51 to 1.89), and 2.02 (1.80 to 2.27), respectively. Results were similar in all subgroups of estimated GFR. Associations weakened after adjustment for additional comorbidities, with respective hazard ratios of 1.03 (0.95 to 1.11), 1.28 (1.14 to 1.44), and 1.46 (1.28 to 1.67). The association between body mass index and death was J shaped, with the lowest risk at body mass index of 25. In the cohorts with high cardiovascular risk and chronic kidney disease (mean follow-up of six and four years, respectively), risk associations between higher body mass index and GFR decline were weaker than in the general population, and the association between body mass index and death was also J shaped, with the lowest risk between body mass index 25 and 30. In all cohort types, associations between higher waist circumference and higher waist-to-height ratio with GFR decline were similar to that of body mass index; however, increased risk of death was not associated with lower waist circumference or waist-to-height ratio, as was seen with body mass index. CONCLUSIONS:Elevated body mass index, waist circumference, and waist-to-height ratio are independent risk factors for GFR decline and death in individuals who have normal or reduced levels of estimated GFR
    corecore