1,361 research outputs found

    Cold Molecule Spectroscopy for Constraining the Evolution of the Fine Structure Constant

    Full text link
    We report precise measurements of ground-state, λ\lambda-doublet microwave transitions in the hydroxyl radical molecule (OH). Utilizing slow, cold molecules produced by a Stark decelerator we have improved over the precision of the previous best measurement by twenty-five-fold for the F' = 2 →\to F = 2 transition, yielding (1 667 358 996 ±\pm 4) Hz, and by ten-fold for the F' = 1 →\to F = 1 transition, yielding (1 665 401 803 ±\pm 12) Hz. Comparing these laboratory frequencies to those from OH megamasers in interstellar space will allow a sensitivity of 1 ppm for Δα/α\Delta\alpha/\alpha over ∼\sim101010^{10} years.Comment: This version corrects minor typos in the Zeeman shift discussio

    Three-Dimensional Microfluidic Tumor Vascular Model for Investigating Breast Cancer Metastasis

    Get PDF
    Metastasis is one of the primary reasons for the high mortality rates in female patients diagnosed with breast cancer. It involves the migration of cancer cells into the circulatory system allowing for the dissemination of cancer cells in distal tissues. Understanding the major processes that occur in cells and tissues during metastasis can help improve currently existing therapeutic methods. In order to understand such mechanisms, developing physiologically relevant tissue models is crucial. Advancements in microfluidics have led to the fabrication of 3D culture models with shear stress gradients and flow control that can recapitulate aspects of the tumor microenvironment in vitro. However, most of these 3D culture models were fabricated using photolithography techniques performed in a clean room, which requires extensive training and can be cost prohibitive. Other studies have used more accessible techniques such as mold casting to construct a vessel-like microchannel. The main drawback of this method is that it limits the usage of high magnification objective lenses. Here, we propose a simple, high-fidelity and cost-effective approach in fabricating in vitro tissue platforms using a 3D printer that is optimal for live-cell imaging. To demonstrate proof-of-concept, we imaged endothelial and fibroblast cells cultured inside the 3D microfluidic collagen hydrogel, which was compared with the control group cultured in the 2D platform. The integrity of the microchannel fabricated inside the collagen hydrogel was imaged by using confocal reflectance microscopy. This feature has broader implications to bioengineered tissue fabrication and should be further explored in depth in the future

    Prospects for the cavity-assisted laser cooling of molecules

    Full text link
    Cooling of molecules via free-space dissipative scattering of photons is thought not to be practicable due to the inherently large number of Raman loss channels available to molecules and the prohibitive expense of building multiple repumping laser systems. The use of an optical cavity to enhance coherent Rayleigh scattering into a decaying cavity mode has been suggested as a potential method to mitigate Raman loss, thereby enabling the laser cooling of molecules to ultracold temperatures. We discuss the possibility of cavity-assisted laser cooling particles without closed transitions, identify conditions necessary to achieve efficient cooling, and suggest solutions given experimental constraints. Specifically, it is shown that cooperativities much greater than unity are required for cooling without loss, and that this could be achieved via the superradiant scattering associated with intracavity self-localization of the molecules. Particular emphasis is given to the polar hydroxyl radical (OH), cold samples of which are readily obtained from Stark deceleration.Comment: 18 pages, 10 figure

    Efficient Stark deceleration of cold polar molecules

    Full text link
    Stark deceleration has been utilized for slowing and trapping several species of neutral, ground-state polar molecules generated in a supersonic beam expansion. Due to the finite physical dimension of the electrode array and practical limitations of the applicable electric fields, only molecules within a specific range of velocities and positions can be efficiently slowed and trapped. These constraints result in a restricted phase space acceptance of the decelerator in directions both transverse and parallel to the molecular beam axis; hence, careful modeling is required for understanding and achieving efficient Stark decelerator operation. We present work on slowing of the hydroxyl radical (OH) elucidating the physics controlling the evolution of the molecular phase space packets both with experimental results and model calculations. From these results we deduce experimental conditions necessary for efficient operation of a Stark decelerator.Comment: 8 pages, 9 figure

    Magneto-Optical Trap for Polar Molecules

    Full text link
    We propose a method for laser cooling and trapping a substantial class of polar molecules, and in particular titanium (II) oxide (TiO). This method uses pulsed electric fields to nonadiabatically remix the ground-state magnetic sublevels of the molecule, allowing us to build a magneto-optical trap (MOT) based on a quasi-cycling J′=J"−1J'=J"-1 transition. Monte-Carlo simulations of this electrostatically remixed MOT (ER-MOT) demonstrate the feasibility of cooling TiO to a temperature of 10 μK\mathrm{\mu}K and trapping it with a radiation-pumping-limited lifetime on the order of 80 ms.Comment: 4 pages, 4 figures, 1 table v2: updated to final published text and figure

    Effects of Preexisting Psychotropic Medication Use on a Cohort of Patients with Ischemic Stroke Outcome

    Get PDF
    Background: Several studies investigated the use of selective serotonin reuptake inhibitors (SSRI) after ischemic stroke to improve motor recovery. However, little is known about the effects of preexisting psychotropic medication use (PPMU), such as antidepressants, on a long-term ischemic stroke functional disability. Objective: We sought to determine the prevalence of PPMU and whether PPMU relates to the long-term clinical outcome in a cohort of patients presenting with acute ischemic strokes. Methods: We retrospectively analyzed 323 consecutive patients who presented with an acute ischemic stroke in a single institution between January 2015 and December 2017. Baseline characteristics, functional disability as measured by the modified Rankin Scale (mRS), and major adverse cardiovascular complications (MACE) within 365 days were recorded. The comparison groups included a control group of ischemic stroke patients who were not on psychotropic medications before and after the index ischemic stroke and a second group of poststroke psychotropic medication use (PoMU), which consisted of patients started on psychotropic medication during the index admission. Results: The prevalence of PPMU in the studied cohort was 21.4% (69/323). There was a greater proportion of females in the PPMU than in the comparison groups (P \u3c 0.001), while vascular risk factors were similar in all groups, except for an increased presence of posterior circulation infarcts in the PPMU (37.4% vs. 18.8%, P \u3c 0.001). Among the patients with available 1-year follow-up data (n = 246), we noted significantly greater improvement in stroke deficits, measured by National Institute of Health Stroke Scale (NIHSS) between PPMU and PoMU vs. control (3 (0-7) versus 1 (0-4), P = 0.041). The 1-year mRS was worse in PPMU and PoMU compared to the control group (2 (IQ 1-3) vs. 2 (IQ 0-3) vs. 1 (IQ 0-2), respectively, P = 0.013), but delta mRS reflecting the degree of mRS improvement showed no significant difference between any PMU and control patients (P = 0.76). There was no statistically significant difference in MACE. Conclusion: PPMU in ischemic stroke is common; it can be beneficial in ischemic stroke in the long-term clinical outcome and is not associated with increased risks of MACE

    Fluorapatite Enhances Mineralization of Mesenchymal/Endothelial Cocultures

    Full text link
    In addition to the widely used mesenchymal stem cells (MSCs), endothelial cells appear to be a favorable cell source for hard tissue regeneration. Previously, fluorapatite was shown to stimulate and enhance mineralization of MSCs. This study aims to investigate the growth of endothelial cells on synthesized ordered fluorapatite surfaces and their effect on the mineralization of adipose-derived stem cells (ASCs) through coculture. Endothelial cells were grown on fluorapatite surfaces and characterized by cell counting, flow cytometry, scanning electron microscopy, and enzyme-linked immunosorbent assay (ELISA). Cells were then cocultured with ASCs and stained for alkaline phosphatase and mineral formation. Fibroblast growth factor (FGF) pathway perturbation and basic FGF (bFGF) treatment of the ASCs were also conducted to observe their effects on differentiation and mineralization of these cells. Fluorapatite surfaces showed good biocompatibility in supporting endothelial cells. Without a mineralization supplement, coculture with endothelial cells induced osteogenic differentiation of ASCs, which was further enhanced by the fluorapatite surfaces. This suggested a combined stimulating effect of endothelial cells and fluorapatite surfaces on the enhanced mineralization of ASCs. Greater amounts of bFGF release by endothelial cells alone or cocultures with ASCs stimulated by fluorapatite surfaces, together with FGF pathway perturbation and bFGF treatment results, suggested that the FGF signaling pathway may function in this process.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140224/1/ten.tea.2013.0113.pd
    • …
    corecore