5 research outputs found

    Analysis of the Impact of CD200 on Neurodegenerative Diseases

    Get PDF
    Neuroinflammation, accompanied by neuronal loss and dysfunction, is a characteristic of neurodegenerative disorders like Alzheimer’s disease (AD) and Parkinson’s disease (PD). It is well documented that inappropriate activation of glia is the primary cause of neuroinflammation (Masocha, 2009), but their role in the pathogenesis of neurodegenerative diseases is not known. However it is certainly the case that dying neurons act to stimulate glia since they release alarmins which activate pathogen recognition receptors (PRR) and therefore the possibility exists that activation of glia especially microglia, may be a consequence, rather than a cause, of neurodegenerative processes which characterize diseases like AD and PD. Understanding microglial function remains a major goal since it is widely believed that modulating glial function will provide a possible strategy for limiting the progression of neurodegenerative diseases. Consequently it is imperative to increase our understanding of the factors which control microglial function and the mechanisms by which expression of these factors are controlled

    Loss of the Martian Atmosphere to Space: Present-Day Loss Rates Determined From MAVEN Observations and Integrated Loss Through Time

    No full text
    Observations of the Mars upper atmosphere made from the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft have been used to determine the loss rates of gas from the upper atmosphere to space for a complete Mars year (16 Nov 2014 – 3 Oct 2016). Loss rates for H and O are sufficient to remove ∼2–3 kg/s to space. By itself, this loss would be significant over the history of the planet. In addition, loss rates would have been greater early in history due to the enhanced solar EUV and more-active Sun. Integrated loss, based on current processes whose escape rates in the past are adjusted according to expected solar evolution, would have been as much as 0.8 bar CO2 or 23 m global equivalent layer of H2O; these losses are likely to be lower limits due to the nature of the extrapolation of loss rates to the earliest times. Combined with the lack of surface or subsurface reservoirs for CO2 that could hold remnants of an early, thick atmosphere, these results suggest that loss of gas to space has been the dominant process responsible for changing the climate of Mars from an early, warmer environment to the cold, dry one that we see today

    Loss of the Martian Atmosphere to Space: Present-Day Loss Rates Determined From MAVEN Observations and Integrated Loss Through Time

    No full text
    Observations of the Mars upper atmosphere made from the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft have been used to determine the loss rates of gas from the upper atmosphere to space for a complete Mars year (16 Nov 2014 – 3 Oct 2016). Loss rates for H and O are sufficient to remove ∼2–3 kg/s to space. By itself, this loss would be significant over the history of the planet. In addition, loss rates would have been greater early in history due to the enhanced solar EUV and more-active Sun. Integrated loss, based on current processes whose escape rates in the past are adjusted according to expected solar evolution, would have been as much as 0.8 bar CO2 or 23 m global equivalent layer of H2O; these losses are likely to be lower limits due to the nature of the extrapolation of loss rates to the earliest times. Combined with the lack of surface or subsurface reservoirs for CO2 that could hold remnants of an early, thick atmosphere, these results suggest that loss of gas to space has been the dominant process responsible for changing the climate of Mars from an early, warmer environment to the cold, dry one that we see today
    corecore