2 research outputs found

    Natural Gas Residual Fluids: Sources, Endpoints, and Organic Chemical Composition after Centralized Waste Treatment in Pennsylvania

    No full text
    Volumes of natural gas extraction-derived wastewaters have increased sharply over the past decade, but the ultimate fate of those waste streams is poorly characterized. Here, we sought to (a) quantify natural gas residual fluid sources and endpoints to bound the scope of potential waste stream impacts and (b) describe the organic pollutants discharged to surface waters following treatment, a route of likely ecological exposure. Our findings indicate that centralized waste treatment facilities (CWTF) received 9.5% (8.5 Ă— 10<sup>8</sup> L) of natural gas residual fluids in 2013, with some facilities discharging all effluent to surface waters. In dry months, discharged water volumes were on the order of the receiving body flows for some plants, indicating that surface waters can become waste-dominated in summer. As disclosed organic compounds used in high volume hydraulic fracturing (HVHF) vary greatly in physicochemical properties, we deployed a suite of analytical techniques to characterize CWTF effluents, covering 90.5% of disclosed compounds. Results revealed that, of nearly 1000 disclosed organic compounds used in HVHF, only petroleum distillates and alcohol polyethoxylates were present. Few analytes targeted by regulatory agencies (e.g., benzene or toluene) were observed, highlighting the need for expanded and improved monitoring efforts at CWTFs

    Indications of Transformation Products from Hydraulic Fracturing Additives in Shale-Gas Wastewater

    No full text
    Unconventional natural gas development (UNGD) generates large volumes of wastewater, the detailed composition of which must be known for adequate risk assessment and treatment. In particular, transformation products of geogenic compounds and disclosed additives have not been described. This study investigated six Fayetteville Shale wastewater samples for organic composition using a suite of one- and two-dimensional gas chromatographic techniques to capture a broad distribution of chemical structures. Following the application of strict compound-identification-confidence criteria, we classified compounds according to their putative origin. Samples displayed distinct chemical distributions composed of typical geogenic substances (hydrocarbons and hopane biomarkers), disclosed UNGD additives (e.g., hydrocarbons, phthalates such as diisobutyl phthalate, and radical initiators such as azobis­(isobutyronitrile)), and undisclosed compounds (e.g., halogenated hydrocarbons, such as 2-bromohexane or 4-bromoheptane). Undisclosed chloromethyl alkanoates (chloromethyl propanoate, pentanoate, and octanoate) were identified as potential delayed acids (i.e., those that release acidic moieties only after hydrolytic cleavage, the rate of which could be potentially controlled), suggesting they were deliberately introduced to react in the subsurface. In contrast, the identification of halogenated methanes and acetones suggested that those compounds were formed as unintended byproducts. Our study highlights the possibility that UNGD operations generate transformation products and underscores the value of disclosing additives injected into the subsurface
    corecore