61 research outputs found

    Neural Excitability and Joint Laxity in Chronic Ankle Instability, Coper, and Control Groups

    Get PDF
    Neuromuscular and mechanical deficiencies are commonly studied in participants with chronic ankle instability (CAI). Few investigators have attempted to comprehensively consider sensorimotor and mechanical differences among people with CAI, copers who did not present with prolonged dysfunctions after an initial ankle sprain, and a healthy control group

    Exploring the Factors Contributing to the High Ultimate pH of Broiler Pectoralis Major Muscles Affected by Wooden Breast Condition

    Get PDF
    The elevated ultimate pH (pHu) found in wooden breast (WB) meat suggests an altered muscular energetic status in WB but also could be related to a prematurely terminated post-mortem pH decline. The aims of this study were to explore the factors contributing to the elevated pHu and establish whether the occurrence of WB defect alters muscle post-mortem carbohydrate metabolism and determine if the contractile apparatus reflects such changes. A total of 24 carcasses from Ross 308 male chickens were obtained from a commercial producer and harvested using commercial processing procedures. Carcasses were categorized into unaffected (NORM) and WB groups (n = 12 each), and samples were collected from cranial bone-in pectoralis major (PM) muscles at 15 min and 24 h post-mortem for the determination of pH, glycolytic metabolites, adenonucleotides, buffering capacity, phosphofructokinase (PFK) activity, and in vitro pH decline. Twenty-four additional deboned PM samples (12 NORM and 12 WB) were collected from the same processing plant to assess muscle histology and sarcomere length at four different locations throughout the PM muscle. Data show that the reduced glycolytic potential of WB muscles only partially explains the higher (P < 0.001) pHu of WB meat, as residual glycogen along with unaltered PFK activity suggests that neither glycogen nor a deficiency of PFK is responsible for arresting glycolysis prematurely. The dramatic reduction in ATP concentrations in the early post-mortem period suggests a defective ATP-generating pathway that might be responsible for the reduced pH decline in WB samples. Further, the addition of excess of ATPase extended post-mortem glycolysis of WB meat in an in vitro glycolytic system. WB-affected samples have longer (P < 0.001) sarcomeres compared to NORM, indicating the existence of compromised energy-generating pathways in myopathic muscles that may have had consequences on the muscle contraction and tension development, as in vivo, also during the post-mortem period. Considering the overall reduced glycolytic potential and the myodegenerative processes associated with WB condition, we speculate that the higher pHu of WB meat might be the outcome of a drastically impaired energy-generating pathway combined with a deficiency and/or a dysfunction of muscle ATPases, having consequences also on muscle fiber contraction degree

    Survival Data and Predictors of Functional Outcome an Average of 15 Years after the Fontan Procedure: The Pediatric Heart Network Fontan Cohort

    Full text link
    ObjectiveMulticenter longitudinal outcome data for Fontan patients surviving into adulthood are lacking. The aim of this study was to better understand contemporary outcomes in Fontan survivors by collecting follow‐up data in a previously well‐characterized cohort.DesignBaseline data from the Fontan Cross‐Sectional Study (Fontan 1) were previously obtained in 546 Fontan survivors aged 11.9 ± 3.4 years. We assessed current transplant‐free survival status in all subjects 6.8 ± 0.4 years after the Fontan 1 study. Anatomic, clinical, and surgical data were collected along with socioeconomic status and access to health care.ResultsThirty subjects (5%) died or underwent transplantation since Fontan 1. Subjects with both an elevated (>21 pg/mL) brain natriuretic peptide and a low Child Health Questionnaire physical summary score (<44) measured at Fontan 1 were significantly more likely to die or undergo transplant than the remainder, with a hazard ratio of 6.2 (2.9–13.5). Among 516 Fontan survivors, 427 (83%) enrolled in this follow‐up study (Fontan 2) at 18.4 ± 3.4 years of age. Although mean scores on functional health status questionnaires were lower than the general population, individual scores were within the normal range in 78% and 88% of subjects for the Child Health Questionnaire physical and psychosocial summary score, and 97% and 91% for the SF‐36 physical and mental aggregate score, respectively. Since Fontan surgery, 119 (28%) had additional cardiac surgery; 55% of these (n = 66) in the interim between Fontan 1 and Fontan 2. A catheter intervention occurred in 242 (57%); 32% of these (n = 78) after Fontan 1. Arrhythmia requiring treatment developed in 118 (28%) after Fontan surgery; 58% of these (n = 68) since Fontan 1.ConclusionsWe found 95% interim transplant‐free survival for Fontan survivors over an average of 7 years of follow‐up. Continued longitudinal investigation into adulthood is necessary to better understand the determinants of long‐term outcomes and to improve functional health status.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110738/1/chd12193.pd

    Effects of myosin heavy chain isoform composition on muscle fiber ATPase activity, postmortem metabolism, and meat quality in porcine muscle

    No full text
    The overall purpose of this research was to determine the influence of myosin heavy chain (MyHC) isoform composition on the functionality of myofibrils in porcine muscle as it relates to postmortem energy metabolism and meat quality. The first study determined the influence of isolation method and pH decline on ATPase activity and MyHC isoform composition of myofibrils isolated from the red (RST) and white (WST) semitendinosus muscles at different times postmortem in electrically-stimulated (ES) and control (NS) carcasses. The MyHC isoform composition of isolated myofibrils was influenced by method of isolation and time postmortem, while myofibrillar ATPase activity was influenced by MyHC and muscle pH decline. The objective of the second study was to determine the influence of MyHC isoform composition on myofibrillar ATPase activity under simulated in vitro postmortem pH, Ca2+, and temperature conditions. ATPase activity and Ca2+-sensitivity of myofibrils decreased with pH. WST myofibrils had a greater ATPase activity but were less Ca 2+-sensitive than RST myofibrils. The objective of the third experiment was to determine the effect of MyHC isoform composition and pH on the inactivation susceptibility of the myofibrillar ATPase apparatus. In samples from both the RST and WST, a low muscle pH irreversibly inactivated the myofibrillar and actin-activated S1 ATPase activity. Actin binding to the S1 head was found to protect myosin from pH inactivation. MyHC isoforms were found to differentially influence the susceptibility to pH inactivation of actin-activated S1 ATPase activity. Using a histochemical ATPase assay and immunolocalization of MyHC isoform expression, the objective of the fourth study was to determine postmortem pH and temperature decline effects on the actomyosin ATPase activity of muscle fibers expressing different MyHC isoforms. Compared to slow muscle fibers, fibers expressing fast MyHC isoforms had a higher ATPase activity early postmortem but were more susceptible to ATPase inactivation by a rapid muscle pH decline. Overall these data suggest that MyHC isoform composition influences postmortem muscle ATP hydrolysis and susceptibility to protein alterations, which in turn affect postmortem metabolism and meat quality

    Potential Role of Ribonucleotide Reductase Enzyme in Mitochondria Function and Woody Breast Condition in Broiler Chickens

    No full text
    The cellular events leading to the development of the woody breast myopathy in broiler breast muscle are unclear. Affected woody breast muscle exhibits muscle fiber degeneration/regeneration, connective tissue accumulation, and adverse morphological changes in mitochondria. Ribonucleotide reductase (RNR) is an enzyme for the synthesis of dNTP, which is important for mitochondria DNA content (mtDNA). RNR consists of two subunits: RRM1/RRM2. A decrease in RRM2 is associated with a decrease in mtDNA and mitochondria proteins, leading to impaired ATP production. The objective of this study was to investigate potential RNR differences between woody breast (WB) and normal (N) breast muscle by examining RRM2 expression and associated pathways. Gene expression and enzyme activities were examined by qPCR and commercial kits. Results showed that RRM2 expression reduced for WB (p = 0.01) and genes related to mitochondria, including ATP6 (p = 0.03), COX1 (p = 0.001), CYTB (p = 0.07), ND2 (p = 0.001) and ND4L (p = 0.03). Furthermore, NDUFB7 and COX 14, which are related to mitochondria and ATP synthesis, tended to be reduced in WB. Compared to N, GLUT1 reduced for WB (p = 0.05), which is responsible for glucose transport in cells. Consequently, PDK4 (p = 0.0001) and PPARG (p = 0.008) increased in WB, suggesting increased fatty acid oxidation. Citric synthase activity and the NAD/NADH ratio (p = 0.02) both reduced for WB, while WB increased CHRND expression (p = 0.001), which is a possible indicator of high reactive oxygen species levels. In conclusion, a reduction in RRM2 impaired mitochondria function, potentially ATP synthesis in WB, by increasing fibrosis and the down-regulation of several genes related to mitochondria function

    A new experimental facility to generate artificial up and downwelling zones

    No full text

    Development of Imaging System for Online Detection of Chicken Meat with Wooden Breast Condition

    No full text
    In recent years, the wooden breast condition has emerged as a major meat quality defect in the poultry industry worldwide. Broiler pectoralis major muscle with the wooden breast condition is characterized by hardness upon human palpation, which can lead to decrease in meat value or even reduced consumer acceptance. The current method of wooden breast detection involves a visual and/or tactile evaluation. In this paper, we present a sideview imaging system for online detection of chicken breast fillets affected by the wooden breast condition. The system can measure a physical deformation (bending) of an individual chicken-breast fillet through high-speed imaging at about 200 frames per second and custom image processing techniques. The developed image processing algorithm shows the over 95% classification performance in detecting wooden breast fillets

    Nutritional Strategies to Improve Meat Quality and Composition in the Challenging Conditions of Broiler Production: A Review

    No full text
    Poultry meat is becoming one of the most important animal protein sources for human beings in terms of health benefits, cost, and production efficiency. Effective genetic selection and nutritional programs have dramatically increased meat yield and broiler production efficiency. However, modern practices in broiler production result in unfavorable meat quality and body composition due to a diverse range of challenging conditions, including bacterial and parasitic infection, heat stress, and the consumption of mycotoxin and oxidized oils. Numerous studies have demonstrated that appropriate nutritional interventions have improved the meat quality and body composition of broiler chickens. Modulating nutritional composition [e.g., energy and crude protein (CP) levels] and amino acids (AA) levels has altered the meat quality and body composition of broiler chickens. The supplementation of bioactive compounds, such as vitamins, probiotics, prebiotics, exogenous enzymes, plant polyphenol compounds, and organic acids, has improved meat quality and changed the body composition of broiler chickens
    • 

    corecore