5 research outputs found
Defining fluoroquinolone resistance-mediating mutations from non-resistance polymorphisms in Mycoplasma hominis Topoisomerases
Often dismissed as a commensal, Mycoplasma hominis is an increasingly prominent target of research due to its role in septic arthritis and organ transplant failure in immunosuppressed patients, particularly lung transplantation. As a mollicute, its highly reductive genome and structure render it refractile to most forms of treatment and growing levels of resistance to the few sources of treatment left, such as fluoroquinolones. We examined antimicrobial susceptibility (AST) to fluoroquinolones on 72 isolates and observed resistance in three (4.1%), with corresponding mutations in the quinolone resistance-determining region (QRDR) of S83L or E87G in gyrA and S81I or E85V in parC. However, there were high levels of polymorphism identified between all isolates outside of the QRDR, indicating caution for a genomics-led approach for resistance screening, particularly as we observed a further two quinolone-susceptible isolates solely containing gyrA mutation S83L. However, both isolates spontaneously developed a second spontaneous E85K parC mutation and resistance following prolonged incubation in 4 mg/L levofloxacin for an extra 24–48 h. Continued AST surveillance and investigation is required to understand how gyrA QRDR mutations predispose M. hominis to rapid spontaneous mutation and fluoroquinolone resistance, absent from other susceptible isolates. The unusually high prevalence of polymorphisms in M. hominis also warrants increased genomics’ surveillance
Antibiotic resistance among clinical Ureaplasma isolates from Cuban individuals between 2013 and 2018
Introduction. Acquired resistance against the antibiotics that are active against Ureaplasma species has been described.
Hypothesis/Gap Statement. Diagnostics combined with antimicrobial sensitivity testing are required for therapeutic guidance.
Aim. To report the prevalence of antimicrobial resistance among Cuban Ureaplasma isolates and the related molecular mechanisms of resistance.
Methodology. Traditional broth microdilution assays were used for antimicrobial sensitivity testing in 262 clinical Ureaplasma species isolates from Cuban patients between 2013 and 2018, and a subset of samples were investigated in parallel with the commercial MYCO WELL D-ONE rapid culture diagnostic assay. The underlying molecular mechanisms for resistance were determined by PCR and sequencing for all resistant isolates.
Results. Among the tested isolates, the tetracycline and erythromycin resistance rates were 1.9 and 1.5%, respectively, while fluoroquinolone resistance was not found. The tet(M) gene was found in all tetracycline-resistant isolates, but also in two tetracycline-susceptible Ureaplasma clinical isolates. We were unable to determine the underlying mechanism of erythromycin resistance. The MYCO WELL D-ONE kit overestimated tetracycline and erythromycin resistance in Ureaplasma spp. isolates.
Conclusions. Although low levels of antibiotic resistance were detected in Cuban patients over a 5-year period, continued surveillance of the antibiotic susceptibility of Ureaplasma is necessary to monitor possible changes in resistance patterns
Antimicrobial Susceptibility Patterns of Recent Cuban Mycoplasma genitalium Isolates Determined by a Modified Cell-Culture-Based Method.
Isolation of Mycoplasma genitalium from clinical specimens remains difficult and few strains are available for antimicrobial susceptibility testing. We describe the antimicrobial susceptibility of M. genitalium strains grown in Vero cell culture with first- and second- line antibiotics, using a modified cell-culture-based method. Macrolide- and -fluoroquinolone resistance determinants were detected by sequencing of the 23S and parC genes, respectively. Seven strains were examined, including three new, genetically distinct M. genitalium strains isolated from endocervical and urethral swab specimens from Cuban patients together with four reference strains isolated from specimens collected from men in Denmark, Sweden and Australia. Azithromycin was the most active drug against two of the Cuban M. genitalium strains with MICs values of 0.008 mg/liter, however, one strain was macrolide resistant with an MIC of >8 mg/liter, and the A2059G resistant genotype. Ciprofloxacin was the least active antimicrobial drug and moxifloxacin was the most active fluoroquinolone against the new clinical strains, although an MIC of 1 mg/l was found for two strains. However, no relevant parC mutations were detected. MICs for tetracyclines were 0.5-4 mg/liter. Although the number of Cuban strains was low, the results suggest that a single-dose azithromycin treatment could be ineffective, and that a second-line treatment with moxifloxacin, should become an option in Cuba. To our knowledge, this is the first report of isolation and antibiotic susceptibility testing of M. genitalium strains from the Latin-American region, and the first detection of macrolide resistance in such strains
Minimal Inhibitory Concentration values for <i>M</i>. <i>genitalium</i> strains determined by a modified cell-culture-based method.
<p>Minimal Inhibitory Concentration values for <i>M</i>. <i>genitalium</i> strains determined by a modified cell-culture-based method.</p