29 research outputs found

    A murine mesenchymal stem cell model for initiating events in osteosarcomagenesis points to CDK4/CDK6 inhibition as a therapeutic target

    Get PDF
    Osteosarcoma is a high-grade bone-forming neoplasm, with a complex genome. Tumours frequently show chromothripsis, many deletions, translocations and copy number alterations. Alterations in the p53 or Rb pathway are the most common genetic alterations identified in osteosarcoma. Using spontaneously transformed murine mesenchymal stem cells (MSCs) which formed sarcoma after subcutaneous injection into mice, it was previously demonstrated that p53 is most often involved in the transformation towards sarcomas with complex genomics, including osteosarcoma. In the current study, not only loss of p53 but also loss of p16(Ink4a) is shown to be a driver of osteosarcomagenesis: murine MSCs with deficient p15(Ink4b), p16(Ink4a), or p19(Arf) transform earlier compared to wild-type murine MSCs. Furthermore, in a panel of nine spontaneously transformed murine MSCs, alterations in p15(Ink4b), p16(Ink4a), or p19(Arf) were observed in eight out of nine cases. Alterations in the Rb/p16 pathway could indicate that osteosarcoma cells are vulnerable to CDK4/CDK6 inhibitor treatment. Indeed, using two-dimensional (n = 7) and three-dimensional (n = 3) cultures of human osteosarcoma cell lines, it was shown that osteosarcoma cells with defective p16(INK4A) are sensitive to the CDK4/CDK6 inhibitor palbociclib after 72-hour treatment. A tissue microarray analysis of 109 primary tumour biopsies revealed a subset of patients (20-23%) with intact Rb, but defective p16 or overexpression of CDK4 and/or CDK6. These patients might benefit from CDK4/CDK6 inhibition, therefore our results are promising and might be translated to the clinic.Osteosarcoma is a tumour with a highly complex genome, which hampers the identification of driver genes. Using a model of murine mesenchymal stem cells (MSCs) with deficient p15(Ink4b), p16(Ink4a), or p19(Arf) that transform earlier compared to wild-type MSCs, the authors demonstrated that loss of p16(Ink4a) is a driver of osteosarcomagenesis. This can be exploited with a CDK4/CDK6 inhibitor, as osteosarcoma cells showed sensitivity to palbociclib which might be used as a novel therapeutic option.Molecular tumour pathology - and tumour geneticsMTG

    Histological response to radiotherapy is an early event in myxoid liposarcoma

    Get PDF
    Compared to other sarcomas, myxoid liposarcoma (MLS) is exceptionally sensitive to radiation therapy, but the underlying mechanism remains unknown. The objective was to assess the tissue-based changes in MLS during and after neoadjuvant radiotherapy in 26 patients of the DOREMY trial. Morphological assessment was performed on biopsies pre-treatment, after 8 fractions, 16 factions, and after surgical resection and included percentage of viable tumor cells, hyalinization, necrosis, and fatty maturation. Furthermore, immunohistochemistry was performed for apoptosis (cleaved caspase-3), anti-apoptosis (Bcl-2), activity of mTOR signaling (phospho-S6), hypoxia (CAIX), proliferation (Ki67), inflammation (CD45 and CD68), and microvessel density (CD34 Chalkley count). A pronounced reduction in vital tumor cells was observed early with a drop to 32.5% (median) tumor cells (IQR 10–93.8%) after 8 fractions. This decreased further to 10% (IQR 5–30%) after 16 fractions and 7.5% (IQR 5–15%) in the surgical specimen. All but one patient had an excellent response with MTG6Molecular tumour pathology - and tumour genetic

    Targeting the NAD salvage synthesis pathway as a novel therapeutic strategy for osteosarcomas with low NAPRT expression

    Get PDF
    For osteosarcoma (OS), the most common primary malignant bone tumor, overall survival has hardly improved over the last four decades. Especially for metastatic OS, novel therapeutic targets are urgently needed. A hallmark of cancer is aberrant metabolism, which justifies targeting metabolic pathways as a promising therapeutic strategy. One of these metabolic pathways, the NAD+ synthesis pathway, can be considered as a potential target for OS treatment. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the classical salvage pathway for NAD+ synthesis, and NAMPT is overexpressed in OS. In this study, five OS cell lines were treated with the NAMPT inhibitor FK866, which was shown to decrease nuclei count in a 2D in vitro model without inducing caspase-driven apoptosis. The reduction in cell viability by FK866 was confirmed in a 3D model of OS cell lines (n = 3). Interestingly, only OS cells with low nicotinic acid phosphoribosyltransferase domain containing 1 (NAPRT1) RNA expression were sensitive to NAMPT inhibition. Using a publicly available (Therapeutically Applicable Research to Generate Effective Treatments (TARGET)) and a previously published dataset, it was shown that in OS cell lines and primary tumors, low NAPRT1 RNA expression correlated with NAPRT1 methylation around the transcription start site. These results suggest that targeting NAMPT in osteosarcoma could be considered as a novel therapeutic strategy, where low NAPRT expression can serve as a biomarker for the selection of eligible patients.Molecular tumour pathology - and tumour geneticsMTG

    Periosteal chondrosarcoma: a histopathological and molecular analysis of a rare chondrosarcoma subtype

    No full text
    Imaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas

    Mutation Analysis of H3F3A and H3F3B as a Diagnostic Tool for Giant Cell Tumor of Bone and Chondroblastoma

    No full text
    Molecular tumour pathology - and tumour genetic
    corecore