4 research outputs found

    The Hilbertian Tensor Norm and Entangled Two-Prover Games

    Full text link
    We study tensor norms over Banach spaces and their relations to quantum information theory, in particular their connection with two-prover games. We consider a version of the Hilbertian tensor norm γ2\gamma_2 and its dual γ2∗\gamma_2^* that allow us to consider games with arbitrary output alphabet sizes. We establish direct-product theorems and prove a generalized Grothendieck inequality for these tensor norms. Furthermore, we investigate the connection between the Hilbertian tensor norm and the set of quantum probability distributions, and show two applications to quantum information theory: firstly, we give an alternative proof of the perfect parallel repetition theorem for entangled XOR games; and secondly, we prove a new upper bound on the ratio between the entangled and the classical value of two-prover games.Comment: 33 pages, some of the results have been obtained independently in arXiv:1007.3043v2, v2: an error in Theorem 4 has been corrected; Section 6 rewritten, v3: completely rewritten in order to improve readability; title changed; references added; published versio

    A Generalized Grothendieck Inequality and Nonlocal Correlations that Require High Entanglement

    Get PDF
    Suppose that Alice and Bob make local two-outcome measurements on a shared entangled quantum state. We show that, for all positive integers d, there exist correlations that can only be reproduced if the local Hilbert-space dimension is at least d. This establishes that the amount of entanglement required to maximally violate a Bell inequality must depend on the number of measurement settings, not just the number of measurement outcomes. We prove this result by establishing a lower bound on a new generalization of Grothendieck’s constant.</p
    corecore