581 research outputs found

    A Smooth Lattice construction of the Oppenheimer-Snyder spacetime

    Full text link
    We present test results for the smooth lattice method using an Oppenheimer-Snyder spacetime. The results are in excellent agreement with theory and numerical results from other authors.Comment: 60 pages, 28 figure

    Drivers of spectral optical scattering by particles in the upper 500 m of the Atlantic Ocean

    Get PDF
    Optical models have been proposed to relate spectral variations in the beam attenuation (cp) and optical backscattering (bbp) coefficients to marine particle size distributions (PSDs). However, due to limited PSD data, particularly in the open ocean, optically derived PSDs suffer from large uncertainties and we have a poor empirical understanding of the drivers of spectral cp and bbp coefficients. Here we evaluated PSD optical proxies and investigated their drivers by analyzing an unprecedented dataset of co-located PSDs, phytoplankton abundances and optical measurements collected across the upper 500 m of the Atlantic Ocean. The spectral slope of cp was correlated (r>0.59) with the slope of the PSD only for particles with diameters >1 ”m and also with eukaryotic phytoplankton concentrations. No significant relationships between PSDs and the spectral slope of bbp were observed. In the upper 200 m, the bbp spectral slope was correlated to the light absorption by particles (ap; r<-0.54) and to the ratio of cyanobacteria to eukaryotic phytoplankton. This latter correlation was likely the consequence of the strong relationship we observed between ap and the concentration of eukaryotic phytoplankton (r=0.83)

    Evaluating an interactive acceptance and commitment therapy (ACT) workshop delivered to trained therapists working with cancer patients in the United Kingdom: a mixed methods approach

    Get PDF
    Background SURECAN (SUrvivors’ Rehabilitation Evaluation after CANcer) is a multi-phase study developing and evaluating an Acceptance and Commitment Therapy (ACT) intervention integrated with exercise and work when highly valued (thus we called the intervention ACT+), for people who have completed treatment for cancer but who have low quality of life. We developed a training programme for therapists working in different psychological services to be delivered over 2–3 days. Our aim was to evaluate the extent to which the training could improve therapists’ knowledge and confidence to deliver ACT+ to cancer patients in a trial setting. Methods Three interactive workshops were delivered to 29 therapists from three clinical settings in London and in Sheffield. A mixed-methods approach was used. Questionnaires were designed to assess knowledge and confidence in using ACT+ with people who have low quality of life after cancer treatment. They were self-administered immediately prior to and after each workshop. Open text-based questions were used to elicit feedback about the workshops alongside a satisfaction scale. Semi-structured interviews were conducted with a purposive sample of therapists (n = 12) to explore their views about the training more deeply, and how it might be optimised. Results Quantitative analysis showed that knowledge of ACT, as well as confidence in using the ACT+ intervention in this setting increased significantly after training (28.6 and 33.5% increase in the median score respectively). Qualitative analysis indicated that most therapists were satisfied with the content and structure of the programme, valued the rich resources provided and enjoyed the practice-based approach. Potential barriers/facilitators to participation in the trial and to the successful implementation of ACT+ were identified. For some therapists, delivering a manualised intervention, as well as supporting exercise- and work-related goals as non-specialists was seen as challenging. At the same time, therapists valued the opportunity to be involved in research, whilst training in a new therapy model. Conclusions Training can effectively improve the knowledge and confidence of therapists from different clinical backgrounds to deliver a modified ACT intervention to cancer patients in a trial setting

    Determination of the absorption coefficient of chromophoric dissolved organic matter from underway spectrophotometry

    Get PDF
    This is the final version. Available on open access from Optical Society of America via the DOI in this recordMeasurements of the absorption coefficient of chromophoric dissolved organic matter (ay) are needed to validate existing ocean-color algorithms. In the surface open ocean, these measurements are challenging because of low ay values. Yet, existing global datasets demonstrate that ay could contribute between 30% to 50% of the total absorption budget in the 400-450 nm spectral range, thus making accurate measurement of ay essential to constrain these uncertainties. In this study, we present a simple way of determining ay using a commercially-available in-situ spectrophotometer operated in underway mode. The obtained ay values were validated using independent collocated measurements. The method is simple to implement, can provide measurements with very high spatio-temporal resolution, and has an accuracy of about 0.0004 m−1 and a precision of about 0.0025 m−1 when compared to independent data (at 440 nm). The only limitation for using this method at sea is that it relies on the availability of relatively large volumes of ultrapure water. Despite this limitation, the method can deliver the ay data needed for validating and assessing uncertainties in ocean-colour algorithms.European Space Agency (ESA)National Atmospheric and Space Administration (NASA

    Determination of the absorption coefficient of chromophoric dissolved organic matter from underway spectrophotometry

    Get PDF
    Measurements of the absorption coefficient of chromophoric dissolved organic matter (ay) are needed to validate existing ocean-color algorithms. In the surface open ocean, these measurements are challenging because of low ay values. Yet, existing global datasets demonstrate that ay could contribute between 30% to 50% of the total absorption budget in the 400–450 nm spectral range, thus making accurate measurement of ay essential to constrain these uncertainties. In this study, we present a simple way of determining ay using a commercially-available in-situ spectrophotometer operated in underway mode. The obtained ay values were validated using independent collocated measurements. The method is simple to implement, can provide measurements with very high spatio-temporal resolution, and has an accuracy of about 0.0004 m−1 and a precision of about 0.0025 m−1 when compared to independent data (at 440 nm). The only limitation for using this method at sea is that it relies on the availability of relatively large volumes of ultrapure water. Despite this limitation, the method can deliver the ay data needed for validating and assessing uncertainties in ocean-colour algorithms

    Effective stress-energy tensors, self-force, and broken symmetry

    Full text link
    Deriving the motion of a compact mass or charge can be complicated by the presence of large self-fields. Simplifications are known to arise when these fields are split into two parts in the so-called Detweiler-Whiting decomposition. One component satisfies vacuum field equations, while the other does not. The force and torque exerted by the (often ignored) inhomogeneous "S-type" portion is analyzed here for extended scalar charges in curved spacetimes. If the geometry is sufficiently smooth, it is found to introduce effective shifts in all multipole moments of the body's stress-energy tensor. This greatly expands the validity of statements that the homogeneous R field determines the self-force and self-torque up to renormalization effects. The forces and torques exerted by the S field directly measure the degree to which a spacetime fails to admit Killing vectors inside the body. A number of mathematical results related to the use of generalized Killing fields are therefore derived, and may be of wider interest. As an example of their application, the effective shift in the quadrupole moment of a charge's stress-energy tensor is explicitly computed to lowest nontrivial order.Comment: 22 pages, fixed typos and simplified discussio

    Uncertainty in ocean-color estimates of chlorophyll for phytoplankton groups

    Get PDF
    This is the final version. Available from Frontiers Media via the DOI in this record.Over the past decade, techniques have been presented to derive the community structure of phytoplankton at synoptic scales using satellite ocean-color data. There is a growing demand from the ecosystem modeling community to use these products for model evaluation and data assimilation. Yet, from the perspective of an ecosystem modeler these products are of limited use unless: (i) the phytoplankton products provided by the remote-sensing community match those required by the ecosystem modelers; and (ii) information on per-pixel uncertainty is provided to evaluate data quality. Using a large dataset collected in the North Atlantic, we re-tune a method to estimate the chlorophyll concentration of three phytoplankton groups, partitioned according to size [pico- (20 ÎŒm)]. The method is modified to account for the influence of sea surface temperature, also available from satellite data, on model parameters and on the partitioning of microphytoplankton into diatoms and dinoflagellates, such that the phytoplankton groups provided match those simulated in a state of the art marine ecosystem model (the European Regional Seas Ecosystem Model, ERSEM). The method is validated using another dataset, independent of the data used to parameterize the method, of more than 800 satellite and in situ match-ups. Using fuzzy-logic techniques for deriving per-pixel uncertainty, developed within the ESA Ocean Colour Climate Change Initiative (OC-CCI), the match-up dataset is used to derive the root mean square error and the bias between in situ and satellite estimates of the chlorophyll for each phytoplankton group, for 14 different optical water types (OWT). These values are then used with satellite estimates of OWTs to map uncertainty in chlorophyll on a per pixel basis for each phytoplankton group. It is envisaged these satellite products will be useful for those working on the validation of, and assimilation of data into, marine ecosystem models that simulate different phytoplankton groups.National Centre for Earth Observation (NCEO)European Space Agency (ESA)NERC-UK ECOMA

    Uncertainty in ocean-colour estimates of chlorophyll for phytoplankton groups

    Get PDF
    Over the past decade, techniques have been presented to derive the community structure of phytoplankton at synoptic scales using satellite ocean-color data. There is a growing demand from the ecosystem modeling community to use these products for model evaluation and data assimilation. Yet, from the perspective of an ecosystem modeler these products are of limited use unless: (i) the phytoplankton products provided by the remote-sensing community match those required by the ecosystem modelers; and (ii) information on per-pixel uncertainty is provided to evaluate data quality. Using a large dataset collected in the North Atlantic, we re-tune a method to estimate the chlorophyll concentration of three phytoplankton groups, partitioned according to size [pico- (20 ÎŒm)]. The method is modified to account for the influence of sea surface temperature, also available from satellite data, on model parameters and on the partitioning of microphytoplankton into diatoms and dinoflagellates, such that the phytoplankton groups provided match those simulated in a state of the art marine ecosystem model (the European Regional Seas Ecosystem Model, ERSEM). The method is validated using another dataset, independent of the data used to parameterize the method, of more than 800 satellite and in situ match-ups. Using fuzzy-logic techniques for deriving per-pixel uncertainty, developed within the ESA Ocean Colour Climate Change Initiative (OC-CCI), the match-up dataset is used to derive the root mean square error and the bias between in situ and satellite estimates of the chlorophyll for each phytoplankton group, for 14 different optical water types (OWT). These values are then used with satellite estimates of OWTs to map uncertainty in chlorophyll on a per pixel basis for each phytoplankton group. It is envisaged these satellite products will be useful for those working on the validation of, and assimilation of data into, marine ecosystem models that simulate different phytoplankton groups

    Area-angle variables for general relativity

    Full text link
    We introduce a modified Regge calculus for general relativity on a triangulated four dimensional Riemannian manifold where the fundamental variables are areas and a certain class of angles. These variables satisfy constraints which are local in the triangulation. We expect the formulation to have applications to classical discrete gravity and non-perturbative approaches to quantum gravity.Comment: 7 pages, 1 figure. v2 small changes to match published versio

    Moody Music Generator: Characterising Control Parameters Using Crowdsourcing.

    Get PDF
    Abstract. We characterise the expressive effects of a music generator capable of varying its moods through two control parameters. The two control parameters were constructed on the basis of existing work on va-lence and arousal in music, and intended to provide control over those two mood factors. In this paper we conduct a listener study to determine how people actually perceive the various moods the generator can produce. Rather than directly attempting to validate that our two control param-eters represent arousal and valence, instead we conduct an open-ended study to crowd-source labels characterising different parts of this two-dimensional control space. Our aim is to characterise perception of the generator’s expressive space, without constraining listeners ’ responses to labels specifically aimed at validating the original arousal/valence moti-vation. Subjects were asked to listen to clips of generated music over the Internet, and to describe the moods with free-text labels. We find that the arousal parameter does roughly map to perceived arousal, but that the nominal “valence ” parameter has strong interaction with the arousal parameter, and produces different effects in different parts of the con-trol space. We believe that the characterisation methodology described here is general and could be used to map the expressive range of other parameterisable generators.
    • 

    corecore