374 research outputs found

    On the detection of Lorentzian profiles in a power spectrum: A Bayesian approach using ignorance priors

    Get PDF
    Aims. Deriving accurate frequencies, amplitudes, and mode lifetimes from stochastically driven pulsation is challenging, more so, if one demands that realistic error estimates be given for all model fitting parameters. As has been shown by other authors, the traditional method of fitting Lorentzian profiles to the power spectrum of time-resolved photometric or spectroscopic data via the Maximum Likelihood Estimation (MLE) procedure delivers good approximations for these quantities. We, however, show that a conservative Bayesian approach allows one to treat the detection of modes with minimal assumptions (i.e., about the existence and identity of the modes). Methods. We derive a conservative Bayesian treatment for the probability of Lorentzian profiles being present in a power spectrum and describe an efficient implementation that evaluates the probability density distribution of parameters by using a Markov-Chain Monte Carlo (MCMC) technique. Results. Potentially superior to "best-fit" procedure like MLE, which only provides formal uncertainties, our method samples and approximates the actual probability distributions for all parameters involved. Moreover, it avoids shortcomings that make the MLE treatment susceptible to the built-in assumptions of a model that is fitted to the data. This is especially relevant when analyzing solar-type pulsation in stars other than the Sun where the observations are of lower quality and can be over-interpreted. As an example, we apply our technique to CoRoT observations of the solar-type pulsator HD 49933.Comment: 12 pages, 11 figures, accepted for publication in Astronomy and Astrophysic

    The Galactic Inner Halo: Searching for White Dwarfs and Measuring the Fundamental Galactic Constant, Vo/Ro

    Full text link
    We establish an extragalactic, zero-motion frame of reference within the deepest optical image of a globular star cluster, an HST 123-orbit exposure of M4 (GO 8679, cycle 9). The line of sight beyond M4 (l,b (deg) = 351,16) intersects the inner halo (spheroid) of our Galaxy at a tangent-point distance of 7.6 kpc (for Ro = 8 kpc). We isolate these spheroid stars from the cluster based on their proper motions over the 6-year baseline between these and previous epoch HST data (GO 5461, cycle 4). Distant background galaxies are also found on the same sight line using image-morphology techniques. This fixed reference frame allows us to independently determine the fundamental Galactic constant, Vo/Ro = 25.3 +/- 2.6 km/s/kpc, thus providing a velocity of the Local Standard of Rest, v = 202.7 +/- 24.7 km/s for Ro = 8.0 +/- 0.5 kpc. Secondly, the galaxies allow a direct measurement of M4's absolute proper motion, mu_total = 22.57 +/- 0.76 mas/yr, in excellent agreement with recent studies. The clear separation of galaxies from stars in these deep data also allow us to search for inner-halo white dwarfs. We model the conventional Galactic contributions of white dwarfs along our line of sight and predict 7.9 (thin disk), 6.3 (thick disk) and 2.2 (spheroid) objects to the limiting magnitude at which we can clearly delineate stars from galaxies (V = 29). An additional 2.5 objects are expected from a 20% white dwarf dark halo consisting of 0.5 Mo objects, 70% of which are of the DA type. After considering the kinematics and morphology of the objects in our data set, we find the number of white dwarfs to be consistent with the predictions for each of the conventional populations. However, we do not find any evidence for dark halo white dwarfs.Comment: 31 pages, including 6 diagrams and 2 tables. Accepted for publication in Ap

    The Space Motion of the Globular Cluster NGC 6397

    Get PDF
    As a by-product of high-precision, ultra-deep stellar photometry in the Galactic globular cluster NGC 6397 with the Hubble Space Telescope, we are able to measure a large population of background galaxies whose images are nearly point-like. These provide an extragalactic reference frame of unprecedented accuracy, relative to which we measure the most accurate absolute proper motion ever determined for a globular cluster. We find mu_alpha = 3.56 +/- 0.04 mas/yr and mu_delta = -17.34 +/- 0.04 mas/yr. We note that the formal statistical errors quoted for the proper motion of NGC 6397 do not include possible unavoidable sources of systematic errors, such as cluster rotation. These are very unlikely to exceed a few percent. We use this new proper motion to calculate NGC 6397's UVW space velocity and its orbit around the Milky Way, and find that the cluster has made frequent passages through the Galactic disk.Comment: 5 pages including 3 figures, accepted for publication in the Astrophysical Journal Letters. Very minor changes in V2. typos fixe

    EXPRES I. HD~3651 an Ideal RV Benchmark

    Get PDF
    The next generation of exoplanet-hunting spectrographs should deliver up to an order of magnitude improvement in radial velocity precision over the standard 1 m/s state of the art. This advance is critical for enabling the detection of Earth-mass planets around Sun-like stars. New calibration techniques such as laser frequency combs and stabilized etalons ensure that the instrumental stability is well characterized. However, additional sources of error include stellar noise, undetected short-period planets, and telluric contamination. To understand and ultimately mitigate error sources, the contributing terms in the error budget must be isolated to the greatest extent possible. Here, we introduce a new high cadence radial velocity program, the EXPRES 100 Earths program, which aims to identify rocky planets around bright, nearby G and K dwarfs. We also present a benchmark case: the 62-d orbit of a Saturn-mass planet orbiting the chromospherically quiet star, HD 3651. The combination of high eccentricity (0.6) and a moderately long orbital period, ensures significant dynamical clearing of any inner planets. Our Keplerian model for this planetary orbit has a residual RMS of 58 cm/s over a 6\sim 6 month time baseline. By eliminating significant contributors to the radial velocity error budget, HD 3651 serves as a standard for evaluating the long term precision of extreme precision radial velocity (EPRV) programs.Comment: 11 pages, 6 figures, accepted for publication in Astronomical Journa

    EXPRES IV: Two Additional Planets Orbiting ρ\rho Coronae Borealis Reveal Uncommon System Architecture

    Full text link
    Thousands of exoplanet detections have been made over the last twenty-five years using Doppler observations, transit photometry, direct imaging, and astrometry. Each of these methods is sensitive to different ranges of orbital separations and planetary radii (or masses). This makes it difficult to fully characterize exoplanet architectures and to place our solar system in context with the wealth of discoveries that have been made. Here, we use the EXtreme PREcision Spectrograph (EXPRES) to reveal planets in previously undetectable regions of the mass-period parameter space for the star ρ\rho Coronae Borealis. We add two new planets to the previously known system with one hot Jupiter in a 39-day orbit and a warm super-Neptune in a 102-day orbit. The new detections include a temperate Neptune planet (Msini20M{\sin{i}} \sim 20 M_\oplus) in a 281.4-day orbit and a hot super-Earth (Msini=3.7M{\sin{i}} = 3.7 M_\oplus) in a 12.95-day orbit. This result shows that details of planetary system architectures have been hiding just below our previous detection limits; this signals an exciting era for the next generation of extreme precision spectrographs.Comment: Accepted to AJ; 20 pages, 13 figures, 5 Table

    EXPRES. II. Searching for Planets Around Active Stars: A Case Study of HD 101501

    Full text link
    By controlling instrumental errors to below 10 cm/s, the EXtreme PREcision Spectrograph (EXPRES) allows for a more insightful study of photospheric velocities that can mask weak Keplerian signals. Gaussian Processes (GP) have become a standard tool for modeling correlated noise in radial velocity datasets. While GPs are constrained and motivated by physical properties of the star, in some cases they are still flexible enough to absorb unresolved Keplerian signals. We apply GP regression to EXPRES radial velocity measurements of the 3.5 Gyr old chromospherically active Sun-like star, HD 101501. We obtain tight constraints on the stellar rotation period and the evolution of spot distributions using 28 seasons of ground-based photometry, as well as recent TESSTESS data. Light curve inversion was carried out on both photometry datasets to reveal the spot distribution and spot evolution timescales on the star. We find that the >5> 5 m/s rms radial velocity variations in HD 101501 are well-modeled with a GP stellar activity model without planets, yielding a residual rms scatter of 45 cm/s. We carry out simulations, injecting and recovering signals with the GP framework, to demonstrate that high-cadence observations are required to use GPs most efficiently to detect low-mass planets around active stars like HD 101501. Sparse sampling prevents GPs from learning the correlated noise structure and can allow it to absorb prospective Keplerian signals. We quantify the moderate to high-cadence monitoring that provides the necessary information to disentangle photospheric features using GPs and to detect planets around active stars.Comment: 25 pages, 16 figures, accepted to A
    corecore