6 research outputs found

    Imaging the neural circuitry and chemical control of aggressive motivation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the advent of functional magnetic resonance imaging (fMRI) in awake animals it is possible to resolve patterns of neuronal activity across the entire brain with high spatial and temporal resolution. Synchronized changes in neuronal activity across multiple brain areas can be viewed as functional neuroanatomical circuits coordinating the thoughts, memories and emotions for particular behaviors. To this end, fMRI in conscious rats combined with 3D computational analysis was used to identifying the putative distributed neural circuit involved in aggressive motivation and how this circuit is affected by drugs that block aggressive behavior.</p> <p>Results</p> <p>To trigger aggressive motivation, male rats were presented with their female cage mate plus a novel male intruder in the bore of the magnet during image acquisition. As expected, brain areas previously identified as critical in the organization and expression of aggressive behavior were activated, e.g., lateral hypothalamus, medial basal amygdala. Unexpected was the intense activation of the forebrain cortex and anterior thalamic nuclei. Oral administration of a selective vasopressin V<sub>1a </sub>receptor antagonist SRX251 or the selective serotonin reuptake inhibitor fluoxetine, drugs that block aggressive behavior, both caused a general suppression of the distributed neural circuit involved in aggressive motivation. However, the effect of SRX251, but not fluoxetine, was specific to aggression as brain activation in response to a novel sexually receptive female was unaffected.</p> <p>Conclusion</p> <p>The putative neural circuit of aggressive motivation identified with fMRI includes neural substrates contributing to emotional expression (i.e. cortical and medial amygdala, BNST, lateral hypothalamus), emotional experience (i.e. hippocampus, forebrain cortex, anterior cingulate, retrosplenial cortex) and the anterior thalamic nuclei that bridge the motor and cognitive components of aggressive responding. Drugs that block vasopressin neurotransmission or enhance serotonin activity suppress activity in this putative neural circuit of aggressive motivation, particularly the anterior thalamic nuclei.</p

    The Dover, Okla., News

    No full text
    Weekly newspaper from Dover, Oklahoma that includes local, territorial, and national news along with advertising

    A clinical trial of progesterone for severe traumatic brain injury.

    No full text
    BACKGROUND: Progesterone has been associated with robust positive effects in animal models of traumatic brain injury (TBI) and with clinical benefits in two phase 2 randomized, controlled trials. We investigated the efficacy and safety of progesterone in a large, prospective, phase 3 randomized clinical trial. METHODS: We conducted a multinational placebo-controlled trial, in which 1195 patients, 16 to 70 years of age, with severe TBI (Glasgow Coma Scale score, 648 [on a scale of 3 to 15, with lower scores indicating a reduced level of consciousness] and at least one reactive pupil) were randomly assigned to receive progesterone or placebo. Dosing began within 8 hours after injury and continued for 120 hours. The primary efficacy end point was the Glasgow Outcome Scale score at 6 months after the injury. RESULTS: Proportional-odds analysis with covariate adjustment showed no treatment effect of progesterone as compared with placebo (odds ratio, 0.96; confidence interval, 0.77 to 1.18). The proportion of patients with a favorable outcome on the Glasgow Outcome Scale (good recovery or moderate disability) was 50.4% with progesterone, as compared with 50.5% with placebo. Mortality was similar in the two groups. No relevant safety differences were noted between progesterone and placebo. CONCLUSIONS: Primary and secondary efficacy analyses showed no clinical benefit of progesterone in patients with severe TBI. These data stand in contrast to the robust preclinical data and results of early single-center trials that provided the impetus to initiate phase 3 trials. (Funded by BHR Pharma; SYNAPSE ClinicalTrials.gov number, NCT01143064.)
    corecore