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Abstract
Background: With the advent of functional magnetic resonance imaging (fMRI) in awake animals
it is possible to resolve patterns of neuronal activity across the entire brain with high spatial and
temporal resolution. Synchronized changes in neuronal activity across multiple brain areas can be
viewed as functional neuroanatomical circuits coordinating the thoughts, memories and emotions
for particular behaviors. To this end, fMRI in conscious rats combined with 3D computational
analysis was used to identifying the putative distributed neural circuit involved in aggressive
motivation and how this circuit is affected by drugs that block aggressive behavior.

Results: To trigger aggressive motivation, male rats were presented with their female cage mate
plus a novel male intruder in the bore of the magnet during image acquisition. As expected, brain
areas previously identified as critical in the organization and expression of aggressive behavior were
activated, e.g., lateral hypothalamus, medial basal amygdala. Unexpected was the intense activation
of the forebrain cortex and anterior thalamic nuclei. Oral administration of a selective vasopressin
V1a receptor antagonist SRX251 or the selective serotonin reuptake inhibitor fluoxetine, drugs that
block aggressive behavior, both caused a general suppression of the distributed neural circuit
involved in aggressive motivation. However, the effect of SRX251, but not fluoxetine, was specific
to aggression as brain activation in response to a novel sexually receptive female was unaffected.

Conclusion: The putative neural circuit of aggressive motivation identified with fMRI includes
neural substrates contributing to emotional expression (i.e. cortical and medial amygdala, BNST,
lateral hypothalamus), emotional experience (i.e. hippocampus, forebrain cortex, anterior
cingulate, retrosplenial cortex) and the anterior thalamic nuclei that bridge the motor and cognitive
components of aggressive responding. Drugs that block vasopressin neurotransmission or enhance
serotonin activity suppress activity in this putative neural circuit of aggressive motivation,
particularly the anterior thalamic nuclei.
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Background
Aggression is a normal component of mammalian behav-
ior [1]. For animals there is an adaptive advantage to
defending a territory, fighting for limited resources, com-
peting for mates, and protecting young. However, in the
context of human behavior, the motivations, actions and
limits of aggressive acts are not always clear. While social
norms set the boundaries of appropriate aggressive behav-
ior, inappropriate aggressive behavior in the form of inter-
personal violence represents both a mental health and
social problem [2]. As such, impulsivity and violence is
studied in the context of antisocial behavior, co-morbid
with DSM-defined illnesses, such as mania/depression,
ADHD, PTSD, autism, and substance abuse [3,4]. Under-
standing the early risk factors and developmental trajec-
tory of antisocial behavior has helped to devise effective
psychosocial intervention strategies to reduce the inci-
dence of impulsive aggression [5-9]. However, impulsivity
and violence secondary to Axis I disorders appear more
intractable and require both psychosocial intervention
and pharmacotherapy. Unfortunately, the treatment of
impulsive aggression in the clinical setting usually
involves the prescription of combinations of drugs which
by themselves are normally used to treat epilepsy, depres-
sion, anxiety and schizophrenia [4,10]. Hence there is a
need to understand the neural mechanisms contributing
to aggressive behavior for the development of targeted,
behaviorally specific, pharmacotherapeutics.

Serenics are drugs [11] that reduce or delay the rapid onset
of anger without impairing initiative, normal social rela-
tions, appetitive behaviors or the ability to defend oneself
from challenges or threats. Historically, candidate drugs
with serenic potential focused on serotonin 5HT1a and
5HT1b receptor agonists [12]. Treating excessively aggres-
sive patients afflicted with mental retardation, brain
injury or psychiatric illness with drugs like buspirone,
which simulate 5HT1a receptors, or fluoxetine a selective
serotonin reuptake inhibitor (SSRI), reduces several meas-
ures of aggressive responding [13-17].

While serotonin neurotransmission is associated with a
reduction in agonistic behavior, vasopressin released as a
neurochemical signal in the brain does just the opposite,
i.e., it increases aggressive responding. There is a large
body of literature reporting blockade of vasopressin V1a
receptors in a variety of animals suppresses offensive
aggression [18]. Consequently, drugs that target and block
the vasopressin V1a receptor are being developed as poten-
tial therapeutics for the treatment of impulsivity and vio-
lence. Recently, a new class of non-peptidic compounds
targeted to the human V1a receptor was developed using a
monocyclic beta lactam platform [19]. One of these
potential drugs, SRX251, was tested for serenic activity in
the hamster resident/intruder paradigm of offensive

aggression [20]. Oral administration of SRX251 caused a
dose-dependent decrease in several measures of aggressive
behavior without affecting motor activity, olfactory com-
munication, and sexual motivation.

Normal aggressive behavior and aggression characterized
by impulsivity and violence are envisioned to be organ-
ized and controlled by a distributed neural circuit, i.e.,
subsets of interconnected neurons conveying sensory and
motor information to and from sites of integration [21].
By all accounts, this neural circuit is plastic, subject to
modification by past experience as well as present envi-
ronmental and endocrine factors that influence the prob-
ability and intensity of an agonistic encounter [22]. Our
present understanding of this putative neural circuit con-
trolling aggressive behavior is based on early studies using
chemical and electrical stimulation and lesion techniques
in discrete brain areas [23-25]. More recently, immunos-
taining for immediate early gene proteins as cellular
markers of neuronal activity helped identify multiple
areas across the brain presumably involved in aggressive
behavior [26-32]. Unfortunately, the temporal window
for these cellular markers is 50–60 min after the agonistic
encounter leaving in doubt the precise onset and location
of neuronal activity associated with the start of an aggres-
sive attack. Newer imaging technologies like functional
magnetic resonance imaging (fMRI) with the blood oxy-
gen level-dependent (BOLD) technique may resolve this
problem because it is possible to acquire data on changes
in brain activity in seconds. As part of the ethogram of
aggression, male rats in the company of their female cage
mate will piloerect the fur along the midline back in the
presence of a male intruder. This piloerection is unique to
offensive aggression, is not seen in other behaviors, and
signals an impending attack on the intruder [33]. These
characteristics of piloerection combined with its occur-
rence very early in the aggression ethogram, overcome the
limitations that are associated with motion artifacts that
can be seen with fMRI [34]. For the present studies, we
developed a tube shaped vivarium that fits into the bore
of the magnet within centimeters of the eyes and nose of
the male being imaged. This vivarium can accommodate
the female cage mate and the introduction of a novel male
competitor. We discovered that even though a resident
male is confined to a restraining device for an imaging ses-
sion, placing an intruder into the vivarium with its cage
mate induces piloerection – the peripheral, autonomic
sign of aggressive motivation. Because head restraint is a
limitation in any awake animal fMRI study, it is not pos-
sible to image the neural circuit involved in the consum-
matory aspects of aggression like attacks and bites.
However, with the present experimental approach we
report that it is possible to identify the distributed putative
neural circuit associated with the genesis of attack behav-
ior. In addition, the technique also allows the activity of
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this neural circuit to be imaged in the presence or absence
of different drug treatments that affect aggressive respond-
ing.

Results
The total volume of brain activation for resident males
confronted with their mate alone, mate plus intruder,
mate plus intruder in the presence of V1a receptor block-
ade (SRX251), or fluoxetine can be viewed as 3D models
(Fig 1). These 3D volumes of activation from the four
experimental groups are a composite of ten subjects each
and provide a visual representation comparing the differ-
ence in the number of activated voxels across experimen-
tal conditions. There is an ostensible increase in brain
activity (far left column) with the presentation of the
intruder as compared to the mate alone. This brain activity
is reduced with SRX251 treatment in the presence of the
intruder, but less so with fluoxetine treatment. This profile
of activation is similar across major brain regions, e.g. cor-
tex, amygdala, hippocampus, and thalamus (Fig 1). There
appears to be a general decrease in BOLD signal in all
major regions with SRX251 but less so for fluoxetine treat-
ment as compared to the activity observed with mate
alone or mate/intruder. This drug-induced pattern of
brain activity in response to aggression-promoting cues
also extends to functional neural circuits like the olfactory
system and the reward pathway. Figure 2 shows 3-D
images of the activation pattern in the primary olfactory
and mesocorticolimbic dopaminergic systems for aggres-
sive motivation alone (mate/intruder), and SRX251 or
fluoxetine in the presence of mate/intruder. Activation of
both neural circuits is most apparent during mate/
intruder stimulated aggressive motivation. Moderate
activity is still present with fluoxetine treatment but
SRX251 appears to suppress all activity in both neural cir-
cuits.

BOLD activation maps, co-registered on 2-D, coronal sec-
tions for mate alone, mate plus intruder, mate/intruder
with SRX251 or fluoxetine are shown in Figure 3. The
same data can be viewed on 2-D transverse sections in Fig-
ure 4. These activation maps from the four experimental
groups are a composite of ten subjects each, fully regis-
tered into a 3D rat MRI atlas and segmented for volumes
of interest (VOI). Visual inspection of Rows A-G Fig 3 and
Rows D-F Fig 4, show robust bilateral activation across the
cortical mantle during aggressive motivation. Activated
areas include the motor cortex (MO), primary somatosen-
sory cortex (SSp), auditory cortex (AUD), and parietal cor-
tex (PTL). Inspection of Row D Fig 3 and Rows C and D
Fig 4 show intense activation of the anterior thalamic
nuclei and dorsal midline thalamic nuclei during aggres-
sive motivation. Activated areas include the anterior ven-
tral (AV), medial (AM), and lateral (AL) thalamus,
nucleus reunions (RH), and paraventricular thalamus

(PVT). Row E Fig 3 and Row A Fig 4 show activation of the
lateral hypothalamus (LHA) during aggression motiva-
tion, while Rows E-G Fig 3 and Rows C-E Fig 4 show
robust activation of the hippocampus (DG, CA1, CA3).

Drug treatments caused a conspicuous change in the pat-
tern of BOLD signal in response to mate/intruder. Resi-
dents treated with SRX251 show a reduction in signal in
the somatosensory and motor cortices while fluoxetine
treatment did not reduce cortical signal (B-F Fig 3; D-F Fig
4). The lateral hypothalamus shows robust activation in
the presence of mate/intruder, a BOLD signal change not
observed under any other experimental conditions. The
ventral periaqueductal gray (F Fig 3; C Fig 4) shows a high
volume of activation with mate/intruder that is less pro-
nounced with mate alone or SRX251 treatment and is
essentially absent with fluoxetine treatment. Activity in
the raphe nucleus (B Fig 4) is absent in animals treated
with fluoxetine.

The general diminution in BOLD activity with SRX251
during aggressive motivation raises questions about drug
specificity and the apparent suppression of olfaction as a
reason for the decrease in responsiveness. However, when
SRX251 treated males are presented with a novel receptive
female during image acquisition they show good activa-
tion of the primary olfactory system and reward pathway
as shown in Fig 5. This activation of the primary olfactory
system in the presence of SRX251 in response to a recep-
tive female but not during aggressive motivation attests to
the specificity of drug action and the stimulus-dependent
nature of BOLD activation. The same is true for fluoxetine
as the profile of BOLD activation is lowest toward a recep-
tive female and highest toward an intruder. Indeed, there
is a noticeable absence of brain activity toward a receptive
female with fluoxetine treatment (Fig 5).

The putative neural circuit of aggressive motivation was
determined by comparing the volume of activation (i.e.
number of voxels) between mate and mate/intruder using
a Wilcoxon signed-rank test. These brain areas include the
somatosensory, auditory, orbital and retrosplenial corti-
ces, hippocampus, several amygdaloid nuclei and bed
nucleus of the stria terminalis, anterior thalamic nuclei,
paraventricular and lateral hypothalamus, and prelimbic
cortex as shown in Table 1. These sixteen sites were iden-
tified from eighty-three brain areas. Brain areas associated
with aggressive motivation were not only identified by the
volume of activation but were also characterized by a
rapid and robust increase in BOLD signal intensity that
peaked near the time of piloerection (Table 1). These
brain areas include the retrosplenial (F(1,19) = 5.42, p <
.03) and prelimbic cortex (F(1,19) = 5.72, p < .03), CA1
(F(1,19) = 4.65, p < .04) and dentate gyrus (F(1,19) = 4.90, p
< .04) of the hippocampus, cortical amygdala (F(1,19) =
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Three dimensional representations of BOLD activationFigure 1
Three dimensional representations of BOLD activation. The pictures show translucent shells of the brain viewed from 
a caudal/dorsal perspective. The red depicts the localization of activated voxels interpolated into a 3D volume of activation for 
four experimental conditions: mate alone, mate/intruder, and pretreatment with SRX251 or fluoxetine, followed by the aggres-
sive promoting stimulus of mate/intruder. The volumes of activation for each experimental condition are composed of 10 male 
residents each. Once fully registered and segmented, the statistical responses for each animal are averaged on a voxel-by-voxel 
bases. Those averaged voxels that are significantly different from baseline and exceed a 2.0% threshold are show in their appro-
priate spatial location. The volumetric data shown in the whole brain 3D models on the left column were parsed into the four 
major brain areas noted. The geometric volumes constituting each major area like the hippocampus, i.e., subiculum, dentate 
gyrus, CA1, CA2, CA3 have been melded into a single volume shown in yellow.
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4.45, p < .05), lateral posterior (F(1,19) = 6.66, p < .02) and
anterior (F(1,19) = 9.83, p < .005) thalamic areas and lateral
hypothalamus (F(1,19) = 4.46, p < .05). In contrast, brain
activation in response to the presence of the mate alone
showed a gradual increase in BOLD signal that reached
the same magnitude seen with aggressive motivation (left
columns Figs 6, 7, 8). Indeed, repeated measures, 2-way
ANOVA comparing the entire five min post stimulus
period for mate vs. mate/intruder showed no significant
main effect between stimulus conditions, but a significant
main effect for time. For example, the change in BOLD
signal over time for the lateral hypothalamus (Fig 6)
showed no statistical difference between stimulus condi-
tions (F(1,19) = 1.05, p = 0.318) but a significant difference
in the change of BOLD signal over time (F(49,980) = 2.19 p
< .0001). The only exception to this pattern of activation
in the putative neural circuit of aggressive motivation was
the anterior thalamic area (Fig 6) which showed signifi-

cant main effects for condition (F(1,19) = 5.07, p < .04) and
time (F(49,980) = 2.19 p < .002).

Table 2 reports the volume of activation and percent
change in BOLD signal associated with aggressive motiva-
tion in the presence of SRX251 or fluoxetine treatment for
twenty-eight of the eighty-three brain areas analyzed.
These twenty-eight areas were chosen because they
include the putative neural circuit of aggressive motiva-
tion (marked by bold italic) and/or show a significant dif-
ference between drug treatments. Also included in Table 2
are the ventral tegmental area and raphe because of their
prominence in dopamine and serotonin neurotransmis-
sion, respectively. Both drug treatments reduce the vol-
ume of activation in many brain areas identified as part of
the putative neural circuitry of aggressive motivation.
However, as seen in the activation maps (Figs 1, 2, 3, 4)
BOLD signal in response to aggression-promoting stimuli

Activation of functional neuroanatomical systemsFigure 2
Activation of functional neuroanatomical systems. Shown is a reduction in activity in the primary olfactory and meso-
corticolimbic dopaminergic systems in response to mate/intruder following SRX251 and fluoxetine treatment. These 3D vol-
umes of activation are composed of 10 subjects each.
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Coronal 2D BOLD activation mapsFigure 3
Coronal 2D BOLD activation maps. Shown are activation maps for each experimental condition localized to coronal sec-
tions of the segmented rat atlas. The red/yellow depicts the localization of significantly activated and interpolated voxels that 
exceed a 2% threshold above baseline. The color scale denotes the percent change in BOLD signal. The areas of activation for 
each experimental condition are composed of 10 male residents each.
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Transverse 2D BOLD activation mapsFigure 4
Transverse 2D BOLD activation maps. Shown are activation maps for each experimental condition localized to trans-
verse sections of the segmented rat atlas. The red/yellow depicts the localization of significantly activated and interpolated vox-
els that exceed a 2% threshold above baseline. The color scale denotes the percent change in BOLD signal. The areas of 
activation for each experimental condition are composed of 10 male residents each.
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Activation maps for sexual stimulationFigure 5
Activation maps for sexual stimulation. Shown above are 2D BOLD activation maps localized to coronal section of the 
segmented rat atlas for SRX251 and fluoxetine treatment in response to a novel receptive female. The red/yellow depicts the 
localization of significantly activated and interpolated voxels that exceed a 2% threshold above baseline. The color scale 
denotes the percent change in BOLD signal. The areas of activation for each experimental condition are composed of 10 male 
residents each. Below are 3D volumes showing the pattern of activation to a novel receptive female in the olfactory and 
reward systems following SRX251 and fluoxetine treatment. These 3D volumes of activation are composed of 10 subjects 
each.



BMC Neuroscience 2008, 9:111 http://www.biomedcentral.com/1471-2202/9/111
is ostensibly higher with fluoxetine treatment. In particu-
lar, levels of activation in many cortical areas and brain
regions associated with dopaminergic neurotransmission
(e.g. dorsal striatum, substantia nigra, accumbens, ventral
pallidum) are significantly higher with fluoxetine treat-
ment as compared to SRX251. There were no significant
differences between treatment groups in percent change
of BOLD signal over time (Table 2).

Table 3 reports the volume of activation and percent
change in BOLD signal in associated with sexual-promot-
ing stimuli in the presence of SRX251 or fluoxetine. In
contrast, to the data reported in Table 2, there is much
more brain activity with SRX251 treatment than fluoxet-
ine treatment. In particular, levels of activation in many
cortical areas and hippocampus are significantly higher
with SRX251 treatment as compared to fluoxetine. With
the exception of the raphe nuclei, there were no signifi-
cant differences between treatment groups in percent
change of BOLD signal over time (Table 3). This finding
was fully consistent with bench-top behavioral investiga-
tions, which showed that SRX251 blocked aggression but
not sexual behavior. As noted in the Methods, a dose-
response study was conducted to find a threshold dose of
fluoxetine (5 mg/kg) that consistently blocked aggressive

behavior. This same threshold dose of fluoxetine also
blocked sexual behavior.

Time course data showing the percent change in BOLD
signal intensity for select brain areas for aggressive moti-
vation and in response to a sexually receptive female in
the presence of SRX251 or fluoxetine treatment are shown
in Figs 6, 7, 8. All graphs are plotted on the same scales
with the exception of the somatosensory and insular cor-
tices and cortical nucleus of the amygdala show in Fig 8.
Note that each graph has a dashed line at the 2% change
in BOLD signal which denotes the threshold of back-
ground, nonspecific BOLD activity routinely observed in
awake rodent imaging studies. The BOLD response associ-
ated with aggressive motivation (left column) is very sim-
ilar across brain areas as noted above. There is a rapid
increase in activity within the first 30 sec (5 data acquisi-
tion periods) from the introduction of the intruder (time
0 min). Piloerection occurs approximately one minute
after stimulus presentation and represents a period of
peak activation for most areas. The time course for BOLD
activation associated with aggressive motivation (black
triangle) is markedly different with SRX251 and fluoxet-
ine treatments. A solid line is shown demarking the max-
imal percent change in BOLD signal for aggressive
motivation (mate/intruder, left column) in the drug free

Table 1: Activation of brain areas associated with aggressive motivation

Volume of Activation % Change in BOLD Signal
Brain Area Mate Alone Mate + Intruder Mate Alone Mate + Intruder

retrosplenial cortex 26 (10, 61) 50 (26, 99)** 5.0 ± 0.3 10.5 ± 0.5*
orbital cortex refs [30,31,203] 9 (1, 14) 19 (4, 44)* 3.0 ± 0.2 4.1 ± 0.2

auditory cortex 20 (4, 61) 38 (23, 51)* 4.3 ± 0.5 10.1 ± 0.6
somatosensory cortex 114 (16, 266) 221 (141, 392)* 3.7 ± 0.3 11.9 ± 1.1

prelimbic cortex refs [30,31,203-205] 2 (0, 11) 8 (2, 25)* 1.7 ± 0.1 3.5 ± 0.2*
CA1 hippocampus refs [21,30] 27 (10, 67) 46 (32, 110)* 3.1 ± 0.2 5.7 ± 0.2*
dentate gyrus refs [21,30,206] 20 (3, 48) 32 (22, 80)** 2.8 ± 0.2 5.2 ± 0.2*

cortical n. amygdala refs [28,207-210] 14 (5, 29) 23 (14, 52)* 4.6 ± 0.3 7.8 ± 0.3*
basal n. amygdala ref [27] 4 (1, 11) 10 (2, 17)** 3.1 ± 0.2 4.3 ± 0.2

medial n. amygdala refs [27-29,205-207,209-216] 1 (0, 6) 3 (0, 9)* 2.7 ± 0.2 4.6 ± 0.2
bed n. stria terminalis refs [25,27,29,30,205-208,211-214,217] 2 (0, 5) 6 (2, 16)* 3.4 ± 0.3 5.1 ± 0.2

lateral post. n. thalamus 2 (0, 9) 8 (2, 11)** 1.6 ± 0.2 4.2 ± 0.2*
anterior n. thalamus 3 (0, 6) 6 (2, 12)** 1.4 ± 0.2 4.9 ± 0.2**

ventral pallidum 5 (0, 17) 11 (6, 21)* 2.2 ± 0.2 4.1 ± 0.2
lateral hypothalamus refs [25,29,32,42,44-48,178,211,212,214,217-225] 10 (3, 26) 25 (6, 54)* 3.1 ± 0.3 5.7 ± 0.2*

PVN hypothalamus refs [205-207,211,213,214,217] 1 (0, 2) 3 (1, 5)* 2.0 ± 0.1 3.8 ± 0.1

The two left columns report the median (min-max) number of voxels activated (volume of activation) in male residents when presented with their 
female cage mate (mate alone) or their cage mate plus a novel adult male intruder (mate + intruder). Male residents (n = 10) were tested for each 
condition in a counterbalanced design and the data analyzed using a Wilcoxon Signed-Rank Test. The two columns on the right report the percent 
change in BOLD signal (mean ± SE) for that brain area for each experimental condition. These BOLD time course data were compared by taking 
the first 12 data points following stimulus presentation for each condition (up to the time of piloerection) and using a repeated measures 2-way 
ANOVA to assess if there was a significant difference between conditions. Those areas that showed a significant increase in the number of activated 
voxels were screened from a data base of eighty-three brain areas and comprise the putative neural circuit of aggressive motivation. Shown in 
parentheses under ten of these sixteen brain areas are references from a literature review on the neuroanatomy of aggressive behavior across 
different species, gender and agonistic models. Note that the remaining areas not described in the animal literature are primarily from the cortex 
and thalamus. p < 0.05*; p < 0.01**
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condition. None of the brain areas in SRX251 and fluoxe-
tine treated conditions reached this maximum in response
to either aggressive or sexual motivating stimuli. The only
exceptions were the anterior cingulate cortex (Fig 8) with
fluoxetine in response to aggression (mate/intruder) and
the raphe (Fig 6) with SRX251 in response to sex (novel
receptive female). Indeed, the temporal pattern of BOLD
signal change under both drug treatments for either
aggressive motivation or novel female was very similar in
many brain areas (Figs 6, 7, 8). There was a rise in signal
over the first 1 min exceeding the 2% threshold of back-
ground noise and stabilizing around 3–4%. The most
notable exceptions to this pattern were the anterior nuclei
of the thalamus, substantia nigra, raphe and periaqueduc-
tal gray (Fig 6). In the presence of SRX251, BOLD signal
in the anterior thalamus failed to exceed the 2% threshold
over most of the imaging period for both stimulus condi-
tions. In the presence of fluoxetine the raphe was similarly
unresponsive under both stimulus conditions as was the
periaqueductal gray for receptive female. Of all the time
course data in Figs 6, 7, 8, only two showed a significant
difference between stimulus conditions with drug treat-
ment, specifically the substantia nigra with SRX251
(F(1,19) = 5.07, p < .04) and the anterior cingulate cortex
with fluoxetine (F(1,19) = 5.36, p < .05).

Discussion
Neuroanatomy of aggression
The present study describes a method for imaging aggres-
sive motivation using piloerection as a physiological
marker. This "index response" is seen in the presence of a
novel male intruder together with the resident's female
cohabitant and is unique to the ethogram of aggression.
Of the eighty-three brain areas investigated in response to
this aggression-provoking stimulus, sixteen showed a sig-
nificant increase in the volume of activation over the mate
alone. We propose that these sixteen areas comprise the
distributed neural circuit involved in the control of aggres-
sive motivation. Historically, several of these areas,
including the lateral hypothalamus, cortical and medial
amygdala, and bed nucleus of the stria terminalis, have a

key role in the control of aggressive responding (see Table
1 for references). Their place in the neural circuitry of
aggression was identified by techniques using site specific
electrical recordings, lesions, electrochemical stimula-
tions, and by immunostaining for immediate early genes
as biomarkers of neuronal activity. In contrast, BOLD
fMRI is a noninvasive technique sensitive to the oxygena-
tion status of hemoglobin [35]. Enhanced neuronal activ-
ity is accompanied by an increase in metabolism
concomitant with changes in cerebral blood flow and
blood volume to the area of activation [36-39]. Site spe-
cific changes in fMRI signal correlate with the spatial loca-
tion of synaptic activity and neuronal spiking frequency
[40,41]. Although fMRI lacks the spatial resolution
achieved in immunostaining neurons or the millisecond
temporal resolution of electrophysiology it allows
repeated, real-time assessments of changes in neuronal
activity across multiple brain areas. In the present study,
we believe that the identified changes in BOLD signal
reflect the putative neural circuit controlling aggressive
motivation.

The medial basolateral hypothalamus extending from the
mammillary nuclei up through the lateral and anterior
hypothalamus has a fundamental role in the organization
and initiation of aggressive behavior in all mammalian
species studied to date. Note the robust activation of this
"aggression area" in Fig 3, sections D-F, in response to
mate/intruder but not to any other stimulus conditions.
In these studies, the lateral hypothalamus was particularly
sensitive showing both a significant increase in the vol-
ume of activation and increase in BOLD signal to aggres-
sion provoking stimuli. Electrical stimulation of the
lateral hypothalamus elicits attack behavior in rats [42],
cats [43], opossum [44], and monkeys [45], while electro-
lytic lesions in this same area reduce aggressive respond-
ing [46-48]. The lateral hypothalamus has extensive
efferent connections to a majority of the brain areas that
constitute the putative neural circuit of aggressive motiva-
tion identified with fMRI (see Table 1). Anterograde tract
tracing studies show extensive monosynaptic connections

Change in BOLD signal over timeFigure 6 (see previous page)
Change in BOLD signal over time. Shown are representative time course data from select brain areas depicting the 
change in BOLD signal following stimulus presentation (time 0 min). For each brain area the data in response to mate alone or 
mate/intruder are presented on the left column while the data from mate/intruder (aggression) or novel receptive female (sex) 
in the presence of SRX251 or fluoxetine are presented in the middle and right columns. The dashed horizontal line marks the 
threshold of 2% below which is baseline noise in awake imaging studies. The solid line at top represents the approximate 
BOLD signal change for aggressive motivation alone. The scale marked piloerection shows the range of time (62 ± 11) for pilo-
erection following introduction of the mate/intruder into the vivarium. The percentage change in BOLD signal intensity at each 
time point (100 data acquisition over the 10 min scanning period) is the average of 10 male residents for each experimental 
condition. Vertical lines at each data point denote the standard error of the mean. Where show, the F values represent signifi-
cant differences between experimental conditions based on a repeated measured 2-way ANOVA for the 1st min post stimula-
tion.
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Change in BOLD signal in key areas of interestFigure 7
Change in BOLD signal in key areas of interest. See legend from figure 6.
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Change in BOLD signal in limbic cortical areasFigure 8
Change in BOLD signal in limbic cortical areas. See legend from figure 6.
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to the paraventricular nucleus of the hypothalamus (Fig
4D), ventral pallidum (Fig 4B), medial, cortical and basal
nuclei of the amygdala (Fig 3D & Fig 4A), bed nucleus of
the stria terminalis (Fig 4B), CA1 of the hippocampus (Fig
3E–G & Fig 4B, E), and prelimbic/infralimbic cortex (Fig
3B) [49-52]. Given the pivotal position of the lateral
hypothalamus in the neural circuitry of aggression, the a
prior hypothesis, routinely used in fMRI studies, predicted
activation of this brain area.

In our findings, the cerebrum, particularly the somatosen-
sory, auditory, orbital and retrosplenial cortices are acti-
vated with aggressive motivation (Fig 1, Fig 3A, E–G,
Table 1). These cortical areas are conspicuously absent
from the literature describing the neuroanatomy of
aggression in animals (see references Table 1) and are

devoid of direct afferent connections from the lateral
hypothalamus. However, they are consonant with an
extensive human neuroimaging literature indicating that
aggression-inducing stimuli produce activation in frontal
cortex sites [53-55]. This cortical activation is typically
interpreted as indicating that frontal cortex exhibits inhib-
itory control over a number of strongly motivated behav-
iors, including both aggression and defense, a suggestion
that is supported by the relationships between prefrontal
cortex and subcortical structures involved in these emo-
tional responses [56] as well as by the effects of frontal
cortex lesions [57] and damage ([58] for review) on
impulsivity and aggression.

In addition to involvement of inhibition-linked areas of
frontal cortex, the primary motor cortex may be involved

Table 2: Blocking BOLD signal changes following treatment with SRX251 and fluoxetine in response to aggressive promoting stimuli

Volume of Activation % Change in BOLD Signal
Brain Area Mate/Intruder SRX251 Mate/Intruder 

Fluoxetine
Mate/Intruder SRX251 Mate/Intruder 

Fluoxetine

retrosplenial cortex (130) 12 (1, 47) 24 (9, 51)** 5.2 ± 0.3 10.4 ± 0.4
orbital cortex (45) 3 (0, 11) 5 (0, 6) 3.3 ± 0.2 2.0 ± 0.2
auditory cortex (98) 11 (0, 33) 13 (4, 38) 4.0 ± 1.7 4.3 ± 0.5
somatosensory cortex 
(599)

51 (1, 132) 117 (37, 233)** 3.8 ± 0.1 5.9 ± 0.4

motor cortex (386) 24 (0, 71) 57 (20, 181)** 3.7 ± 0.2 5.6 ± 0.2
visual cortex (212) 30 (3, 74) 38 (8, 101) 5.4 ± 0.5 7.6 ± 0.9
insular cortex (128) 4 (0, 14) 10 (4, 30)* 3.1 ± 0.2 3.4 ± 0.4
prelimbic cortex (32) 3 (0, 4) 5 (1, 11) 2.8 ± 0.1 2.5 ± 0.2
infralimbic cortex (17) 0 (0, 3) 5 (0, 9)** 2.0 ± 0.1 1.6 ± 0.1
anterior cingulate ctx (73) 6 (0, 15) 13 (1, 32)** 3.2 ± 0.1 3.6 ± 0.3
CA1 hippocampus (154) 10 (0, 44) 17 (2, 63) 2.9 ± 0.3 3.3 ± 0.2
dentate gyrus (100) 9 (0, 27) 9 (0, 44) 2.8 ± 0.3 3.0 ± 0.3
cortical n. amygdala (69) 6 (0, 24) 9 (3, 20) 3.3 ± 0.2 4.6 ± 0.4
basal n. amygdala (24) 1 (0, 3) 3 (0, 5) 2.3 ± 0.4 2.5 ± 0.2
central n. amygdala (13) 0 (0, 1) 0 (0, 2) 1.0 ± 0.1 0.9 ± 0.1
medial n. amygdala (14) 1 (0, 3) 2 (0, 7) 1.5 ± 0.4 2.7 ± 0.3
bed n. stria terminalis (15) 0 (0, 3) 3 (0, 7) 2.5 ± 0.2 2.7 ± 0.2
lateral post. n. thalamus 
(18)

1 (0, 5) 1 (0, 6) 1.9 ± 0.2 1.5 ± 0.1

anterior n. thalamus (12) 0 (0, 3) 1 (0, 4 1.0 ± 0.1 2.0 ± 0.3
substantia nigra (28) 1 (0, 6) 5 (0, 6)* 2.6 ± 0.1 3.7 ± 0.3
ventral tegmentum (16) 0 (0, 4) 2 (0, 5) 0.8 ± 0.2 1.8 ± 0.2
dorsal striatum (305) 12 (0, 39) 36 (5, 147)** 2.5 ± 0.2 2.2 ± 0.2
ventral pallidum (41) 1 (0, 5) 3 (0, 6)* 1.3 ± 0.2 2.0 ± 0.1
lateral hypothalamus (64) 5 (0,15) 8 (3, 15) 2.9 ± 0.3 3.3 ± 0.3
periaquedutcal gray (42) 4 (0, 15) 3 (0, 7) 1.9 ± 0.2 3.5 ± 0.6
raphe nuclei (15) 1 (0, 6) 1 (0, 2) 2.1 ± 0.4 0.8 ± 0.1
accumbens (45) 2 (0, 5) 8 (0, 25)** 2.8 ± 0.4 3.0 ± 0.2
PVN hypothalamus (3) 1 (0,2) 0 (0, 2) 1.8 ± 0.1 2.0 ± 0.1

Shown are the median number of voxels (min, max) (i.e., volume of activation) and percent change in BOLD signal (mean ± SE) in different brain 
areas in response to aggressive motivation following SRX251 and fluoxetine treatment. These BOLD time course data were compared by taking the 
fifty data points following stimulus presentation for each condition and using a repeated measures 2-way ANOVA to assess if there was a significant 
difference between conditions. There were no significant differences in BOLD signal change over time between drug treatments. Significant 
differences in volume of activation between SRX251 and fluoxetine for each brain region are shown. The numbers in parenthesis shown after each 
brain area is the average number of voxels from ten subjects that occupy that brain volume after registration in the 3D atlas. Brain areas shown in 
bold italic comprise the putative neural circuit of aggressive motivation. p < 0.05*; p < 0.01**
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in direct activation of the behaviors involved in offensive
attack behavior. Offensive attack is a complex and pre-
cisely targeted behavior pattern [33,59]. Separation of cor-
tical and subcortical structures, or extensive cortical
damage [60] downgrade this pattern and alter or abolish
its targeting, suggesting that the behaviors involved in the
offensive attack pattern are organized as are other com-
plex, voluntary behaviors, through the primary motor cor-
tex. Although the rats in this study were restrained and
physically unable to attack, efforts to do so would be
expected to produce much the same pattern of motor cor-
tex activity as an actual attack. The robust activation that
occurred in the somatic sensory cortex just posterior to
frontal cortex may reflect somatic sensations associated
with attempts to make attack movements, or, with sensa-
tions of piloerection in animals tightly confined in a tube.

Collectively, these data suggest that aggressive motivation
in the context of natural stimuli is dependent upon mul-
tiple cortical areas integrating perceptual and cognitive
information, possibly inhibiting or potentiating the neu-
ral circuit of aggressive motivation that ultimately leads to
attack behavior.

The contribution of the thalamus to aggressive motivation
has received little if any attention in the animal and
human literature. The robust BOLD signal change in the
dorsal thalamus during aggressive motivation (Fig 3D
mate/intruder condition) highlights the potential impor-
tance of this area as a key trigger region in behavioral acti-
vation (see Fig 9). This area of the dorsal thalamus
comprises multiple midline nuclei, e.g., paraventricular,
central medial, paratenial, medial dorsal, paracentral and

Table 3: Blocking BOLD signal changes following treatment with SRX251 and fluoxetine in response to sexual promoting stimuli.

Volume of Activation % Change in BOLD Signal
Brain Area Novel Female SRX251 Novel Female 

Fluoxetine
Novel Female SRX251 Novel Female 

Fluoxetine

retrosplenial cortex (130) 23 (3, 67) ** 6 (1, 7) 6.6 ± 0.3 3.9 ± 0.2
orbital cortex (45) 12 (2, 45)** 4 (0, 8) 2.7 ± 0.1 2.7 ± 0.2
auditory cortex (98) 14 (5, 75)** 6 (1, 13) 3.3 ± 0.3 3.4 ± 0.2
somatosensory cortex 
(599)

79 (23, 292) 40 (15, 94) 3.2 ± 0.2 3.6 ± 0.2

motor cortex (386) 72 (18, 230)** 16 (6, 33) 3.1 ± 0.2 3.2 ± 0.3
visual cortex (212) 26 (3, 67) 22 (4, 63) 5.8 ± 0.5 4.2 ± 0.2
insular cortex (128) 17 (6, 62)** 6 (0, 11) 4.4 ± 0.3 3.8 ± 0.3
prelimbic cortex (32) 6 (1, 19)* 3 (0, 5) 2.9 ± 0.2 2.5 ± 0.2
infralimbic cortex (17) 2 (0, 13) 0 (0, 3) 2.2 ± 0.1 2.2 ± 0.1
anterior cingulate ctx (73) 15 (1, 40)** 3 (0, 10) 3.0 ± 0.2 1.9 ± 0.2
CA1 hippocampus (154) 20 (8, 79)** 8 (3, 15) 3.2 ± 0.2 3.4 ± 0.2
dentate gyrus (100) 19 (2, 47)** 4 (0, 7) 3.2 ± 0.1 2.8 ± 0.2
cortical n. amygdala (69) 6 (3, 26) 5 (2, 7) 4.0 ± 0.3 4.4 ± 0.3
basal n. amygdala (24) 1 (0, 6) 1 (0, 2) 2.1 ± 0.2 1.9 ± 0.3
central n. amygdala (13) 1 (0, 4) 0 (0, 0) 1.5 ± 0.1 1.8 ± 0.1
medial n. amygdala (14) 1 (0, 2) 0 (0, 1) 1.2 ± 0.3 1.4 ± 0.2
bed n. stria terminalis (15) 2 (0, 7) 1 (0, 14) 2.2 ± 0.2 2.0 ± 0.1
lateral post. n. thalamus 
(18)

2 (0, 8) 1 (0, 2) 2.5 ± 0.2 1.9 ± 0.2

anterior n. thalamus (12) 2 (0, 13) 0 (0, 7) 1.8 ± 0.2 0.6 ± 0.1
substantia nigra (28) 3 (1, 11) 1 (0, 2) 5.6 ± 0.4 4.6 ± 0.6
ventral tegmentum (16) 1 (0, 8) 1 (0, 2) 2.7 ± 0.2 2.4 ± 0.2
dorsal striatum (305) 26 (16, 158)** 6 (1, 15) 2.5 ± 0.1 2.7 ± 0.2
ventral pallidum (41) 2 (1, 9) 1 (0, 4) 2.1 ± 0.2 2.5 ± 0.1
lateral hypothalamus (64) 7 (1,24) 4 (1, 11) 3.4 ± 0.3 3.9 ± 0.3
periaquedutcal gray (42) 5 (1, 15) ** 1 (0, 3) 2.9 ± 0.2 3.3 ± 0.2
raphe nuclei (15) 2 (0, 7) 0 (0, 1) 4.1 ± 0.4* 0.8 ± 0.3
accumbens (45) 5 (0, 19) 2 (0, 4) 2.2 ± 0.2 2.6 ± 0.2
PVN hypothalamus (3) 2 (0,6) 0 (0, 2) 1.8 ± 0.1 2.2 ± 0.1

Shown are the median number of voxels (min, max) (i.e., volume of activation) and percent change in BOLD signal (mean ± SE) in different brain 
areas in response to aggressive motivation following SRX251 and fluoxetine treatment. These BOLD time course data were compared by taking the 
fifty data points following stimulus presentation for each condition and using a repeated measures 2-way ANOVA to assess if there was a significant 
difference between conditions. Significant differences in volume of activation between SRX251 and fluoxetine for each brain region are shown. The 
numbers in parenthesis shown after each brain area is the average number of voxels from ten subjects that occupy that brain volume after 
registration in the 3D atlas. Brain areas shown in bold italic comprise the putative neural circuit of aggressive motivation. p < 0.05*; p < 0.01**
Page 15 of 35
(page number not for citation purposes)



BMC Neuroscience 2008, 9:111 http://www.biomedcentral.com/1471-2202/9/111
medial habenula bordered by the anterior thalamic
nuclei, e.g. anteroventral, anteromedial and anterodorsal.
When compared to mate alone, only the anterior thalamic
nuclei exhibited a robust increase in BOLD signal (Fig 3D
&4C, D) and volume of activation (Table 1) in response
to mate/intruder. Treatment with SRX251 or fluoxetine
dramatically attenuated the increase in BOLD signal
change in the anterior thalamic nuclei in response to
aggressive or sexual stimuli (Fig 6). The BOLD signal
change did not exceed the 2% baseline threshold over
most of the imaging period in the presence of SRX251 and
only marginally so for fluoxetine with aggressive motiva-
tion but not receptive female.

The anterior thalamic nuclei have not been linked to
aggressive motivation or aggressive behavior; instead, this
brain area has been associated with memory, and interest-
ingly enough, epilepsy. Lesion of the anterior thalamic
nuclei disrupt recall of spatial [61] as well as nonspatial
odorant memory [62] and leads to reduced Fos-like

expression ('hypoactivity') in the hippocampal formation
[63]. Lesion or high frequency stimulation of the anterior
thalamus blocks or reduces pentylenetetrazol and pilo-
carpine-induced generalized seizures [64-66]. Functional
imaging studies in awake rats (see Fig 9) show a robust
increase in BOLD signal intensity in the anterior thalamic
nuclei immediately prior to the onset of pentylenetetra-
zol-induced clonic seizure [67]. Based on temporal
changes in BOLD signal intensity, the putative distributed
neural circuit involved in the genesis of seizure includes
the cortical nucleus of the amygdala, retrosplenial cortex,
hippocampus particularly the dentate gyrus, and anterior
thalamus. The anterior thalamic nuclei appear to be the
gateway to the cortex regulating chemically induced par-
oxysmal electrical activity as evidenced by EEG coherence
studies [68]. Indeed, the sensitivity of the anterior tha-
lamic nuclei to electrochemical stimulation has been the
rationale for electrical stimulation therapy in epilepsy
patients with medically intractable seizures [69,70]

Anterior thalamic nucleiFigure 9
Anterior thalamic nuclei. Shown is a composite of figures depicting the anatomical details (top) of the dorsal midline thala-
mus at the level of the anterior thalamus, an autoradiograph (middle) of V1a binding density in the anterior thalamic nuclei 
(adapted from [100]) and BOLD activation (bottom) in the same thalamic area for aggressive motivation and seizure genesis 
(adapted from [67]).
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The thalamus holds a significant place in early neurology
and psychology research as it was the cornerstone of the
proposed neural circuitry of emotion first proposed by
Walter Cannon [71] and popularized by James Papez
[72]. The "Papez circuit" connects the hypothalamus and
hippocampus to the limbic cortex, i.e. prelimbic, orbital,
anterior cingulate, and retrosplenial cortices through the
anterior thalamus. The anterior thalamic nuclei receive
extensive afferent connections from the hippocampus
[73,74] and the mammillary nuclei [75,76]. Anterior tha-
lamic nuclei send primary projects to the anterior cingu-
late, retrosplenial, prefrontal, and orbital cortices and
adjacent cortical areas all of which are activated with
aggressive motivation [77-80]. The putative neural circuit
of aggressive motivation reported in Table 1 includes
many of the components comprising the "Papez circuit."
The lateral hypothalamus has few if any monosynaptic
connections to the anterior thalamic nuclei; instead the
dorsal thalamic midline nuclei noted above, particularly
the habenula, paraventricular and medial dorsal areas are
heavily innervated. Interestingly, the mammillary body, a
key area in the "Papez circuit" connecting the hypothala-
mus to the anterior thalamic nuclei, is not activated with
aggressive motivation either by a measure of volume of
activation or change in BOLD signal over time (data not
shown). This does not preclude the mammillary bodies
from contributing to the neural circuit of aggression. In
fact, visual observation of the mammillary bodies in Fig
4A show more activation during mate/intruder than other
experimental conditions. Since the many different nuclei
that comprise the mammillary body, e.g. lateral & medial,
mammillary nuclei, supramammillary nuclei and tubero-
mammillary nucleus were collapsed into a single volume
for analysis, activation of any one specific substructure
was obscured.

Neurochemistry of aggression
There is a general consensus that vasopressin functions to
facilitate aggressive behavior across multiple species [18].
Microinjections of vasopressin into the hypothalamus or
amygdala and intraventricular administration in rodents
leads to enhanced aggression while administration of a
selective linear V1a antagonist, Manning compound [1-β-
mercapto-β,β-cyclopentamethylene propionic acid 2-[0-
(methyl) tyrosine] arginine vasopressin, blocks aggressive
behavior [81-85]. In human and animal studies indices of
aggressivity correlate with high concentrations of vaso-
pressin in cerebrospinal fluid [86,87]. Intranasal vaso-
pressin stimulates agonistic facial motor patterns in
response to faces of unfamiliar men and biases male sub-
jects to interpret neutral facial expressions as potentially
aggressive [88,89].

Inappropriate aggressive behavior is closely correlated
with changes in the neurobiology of the vasopressin sys-

tem. Peripubertal hamsters socially subjugated by domi-
nant male hamsters show altered vasopressin
immunoreactivity in the hypothalamus as young adults
and heightened aggression toward smaller conspecifics as
compared to non subjugated littermates [90]. Newborn
rat pups stressed by maternal separation show increased
vasopressin fibers in the lateral hypothalamus as adults
and heightened aggression as compared to littermate con-
trols [91]. Treating adolescent hamsters with anabolic
steroids increases the density of vasopressin immunoreac-
tive fibers, V1a receptor and neuropeptide content in the
hypothalamus and enhances vasopressin-mediated
aggression in adulthood [85,92]. Peripubertal hamsters
exposed to cocaine develop a highly aggressive phenotype
as adults and enhanced released of vasopressin in the
hypothalamus [93]. The development of dominant/sub-
ordinate relationships in hamsters causes a reduction in
vasopressin levels in the hypothalamus in submissive
partners [94] while dominant partners show higher levels
of V1a binding in the hypothalamus [95]. Mice with dis-
tinct behavioral phenotypes of high and low aggressivity,
show correspondingly high and low levels of vasopressin
receptor density and fiber immunostaining in bed nucleus
of the stria terminalis and lateral septum [96]. When high
aggressive phenotypes are cross-fostered with low aggres-
sive parents they show a reduction in aggression in a resi-
dent-intruder paradigm and lower levels of vasopressin in
the bed nucleus as compared to their unfostered siblings
[97].

Given the fundamental role of vasopressin in normal
aggressive behavior and the evidence that adaptations in
vasopressin neurotransmission to negative environmental
events can foster inappropriate aggression, there is a
strong rationale for the development of orally active and
selective V1a receptor antagonists for clinical use in the
control of impulsivity and violence. In the present studies,
orally administered SRX251, a selective V1a antagonist
with picomolar affinity for the human receptor [19], suc-
cessfully blocked the aggressive motivation of resident
males toward male intruders both on the bench-top and
during an imaging session. The efficacy of SRX251 as an
inhibitor of aggressive motivation, as assessed by fMRI,
was characterized by a global suppression of BOLD signal
expressed both as a reduction in the volume of activation
(Fig 1, Table 2) and percent change in BOLD signal in
areas that comprise the putative neural circuit of aggres-
sive motivation (Figs 6, 7, 8, Table 2). This effect of
SRX251 appears to be specific because when male resi-
dents were challenged with sexually motivating stimuli
like the presentation of a novel receptive female, there was
an increase in BOLD signal over several brain areas (Figs
5, 6, 7, 8, Table 3), many of which are not associated with
the neural circuit of aggression. Indeed, the activation of
the primary olfactory system and mesocorticolimbic sys-
Page 17 of 35
(page number not for citation purposes)



BMC Neuroscience 2008, 9:111 http://www.biomedcentral.com/1471-2202/9/111
tem associated with aggressive motivation are dramati-
cally reduced with SRX251 pretreatment (Fig 2), but these
effects are not seen in the context of a sexually receptive
female (Fig 5). One of the more compelling differences in
brain activity between aggressive motivation and sexual
stimuli following SRX251 treatment was the activation of
the dopaminergic pathways originating in the substantia
nigra and ventral tegmental area (Figs 2, 5, 7). SRX251
treatment suppressed activity in these areas in response to
aggression-provoking stimuli but not to sexual stimuli,
which may explain why sexual behavior is spared with V1a
receptor antagonism. The substantia nigra showed a sig-
nificant increase in BOLD signal over time (Fig 6), while
the ventral tegmental area and its efferent connections
showed an ostensible increase in the volume of activation
(Fig 5). The nigrostrial dopaminergic pathway is impor-
tant in sexual readiness while the mesolimbic dopaminer-
gic pathway affects sexual motivation [98].

Brain levels of SRX251 peak within 2–4 hrs of oral admin-
istration and remain elevated for over 8–12 hrs [19]. In a
previous study, we showed that the anti-aggressive effects
of SRX251 were brain mediated and not due to peripheral
blockade of V1a receptors [20]. Vasopressin V1a receptor
binding is found throughout the brain of multiple species,
particularly in many areas that constitute the putative
neural circuit of aggressive motivation identified with
fMRI [99-103]. Specifically, V1a binding is localized to the
lateral hypothalamus, BNST, corticomedial amygdala,
prelimbic cortex, forebrain cortex, PVN, ventral pallidum,
and hippocampus. The anterior thalamic nuclei have a
high density of vasopressin V1a receptors (Fig 9). Conse-
quently, treating resident males with SRX251, a highly
specific V1a receptor antagonist, could suppress aggressive
responding by acting at all or some of these brain areas.

A deficit in serotonin (5-HT) neurotransmission has been
implicated in many human psychiatric conditions. With
respect to aggression, an inverse relationship exists
between 5-HT function as measured by cerebrospinal
fluid levels of the 5-HT metabolite hydroxyindoleacetic
acid and conduct disorder in children, impulsivity, vio-
lence and suicide in adults [104,105]. The inappropriate
aggression associated with this 5-HT deficiency trait is
responsive to psychotherapeutics like the SSRI fluoxetine
that increase the level of 5-HT in brain interstitial fluid.
Treatments with SSRIs reduce inappropriate aggressive
behavior in children and violence and impulsivity in
adults [106,107]. Adult males with a history of conduct
disorder show reduced measures of aggression and impul-
sivity when treated with an SSRI or the 5HT releasing
agent D-fenfluramine [108,109]. Impulsive aggressive
patients with personality disorder show blunted prolactin
release after administration of fenfluramine [14], which
suggests a hyposensitive 5-HT system. The correlation

between low 5-HT neurotransmission or dysregulation
and heightened impulsivity and aggression also is seen in
non-human primates and other mammals (see review by
[105]. Again, treatment with SSRIs can reduce many of the
measures of aggressive and antisocial behavior.

In the present study, oral fluoxetine blocked aggressive
responding in the homecage environment and piloerec-
tion during an imaging session. The anti-aggression effect
of fluoxetine was characterized by an overall reduction of
BOLD signal expressed as a decrease in both the volume
of activation (Figs 1, 2, 3, 4, Table 2) and percent change
in BOLD signal in areas that comprise the putative neural
circuit of aggressive motivation (Figs 6, 7, 8). Indeed, the
change in the volume of activation in response to aggres-
sion-promoting stimuli never exceeded that measured in
mate/intruder alone (Table 2). The anterior nuclei of the
thalamus showed an increase in BOLD signal change that
just exceeded the 2% threshold (Fig 6). Interestingly, the
anterior cingulate a brain area that has a major efferent
connection from the anterior thalamus, showed a signifi-
cant increase in BOLD signal equal to that seen with mate/
intruder alone (Fig 8). One of the more compelling effects
of fluoxetine treatment was the almost complete suppres-
sion of BOLD signal change in the raphe nuclei (Fig 6,
Tables 2, 3). This effect may be due to the negative feed-
back on 5-HT neurons in the raphe through somatoden-
dritic autoreceptors [110]. These imaging data suggest a
fluoxetine mediated reduction in 5-HT neurotransmis-
sion coming from the raphe complex concomitant with
an elevation of 5-HT levels at axonal nerve endings. There
is evidence that chronic fluoxetine treatment down-regu-
lates somatodendritic 5-HT1A autoreceptors at the level of
the raphe enhancing 5-HT neurotransmission [111-113].
Indeed, this is has been hypothesized to explain why treat-
ment with SSRIs for depression requires several weeks
before any signs of drug efficacy [114]. To test this hypoth-
esis with imaging we would predict that animals treated
for several weeks with fluoxetine would show enhanced
BOLD signal in the raphe complex.

Prior to imaging, a dose-response study determined that
oral fluoxetine at 5 mg/kg was the threshold dose for
blocking piloerection of resident males in their homecage
environment in all subjects. At this same anti-aggressive
dose, sexual motivation as measured by the latency to
mount and thrust when presented with a sexually recep-
tive female, was blocked. This suppression of sexual moti-
vation presented as little or no change in BOLD signal
with exposure to a sexually receptive, novel female. Why
this stimulus would cause so little effect on brain activity
as compared to aggression-promoting stimuli is uncer-
tain. A reduction in olfactory processing may be one
explanation as seen in the 3D models in Fig 5. There also
is a reduction in activity in the dopaminergic mesolimbic
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system (Fig 5), which would have a profound effect on
sexual motivation [98]. Interestingly, the lateral hypotha-
lamus has one of the highest concentrations of 5-HT fibers
and terminals in the brain [115]. Treatment with fluoxet-
ine elevates 5-HT levels in the hypothalamus as measured
by microdialysis and reduces aggressive responding in
hamsters [116]. The lateral hypothalamus has 5-HT-sensi-
tive afferent connections to the nucleus accumbens and
ventral tegmental area that inhibit dopamine release in
this mesolimbic system reducing sexual motivation in rats
[117]. Consequently it could be hypothesized that fluox-
etine by blocking the 5-HT reuptake transporter elevates
5-HT levels in the lateral hypothalamus and indirectly
reduces dopamine levels in the accumbens causing both a
reduction in aggressive and sexual motivation. It is well
know that sexual dysfunction is an unwanted side effect of
SSRI use in the treatment of depression [118]. Clinical
studies point to a disruption in dopaminergic neurotrans-
mission as the likely cause [119].

There are clear differences in brain activity toward aggres-
sive- or sexual-promoting stimuli when the effects of
SRX251 and fluoxetine are compared (Tables 2, 3). BOLD
signal in response to aggression promoting stimuli with
fluoxetine is greater compared to SRX251 but reduced in
response to sexual stimuli. These opposite activation pat-
terns to these highly salient stimuli point to different
mechanisms of action and underscore the serenic profile
of SRX251, i.e., a reduction in aggression while sparing
other appetitive behaviors. Furthermore, imaging showed
that both anti-aggressive drugs caused an apparent
decrease in general arousal as measured by the reduction
in volume of activation and BOLD signal. Previous studies
in hamsters showed treatment with SRX251 selectively
reduces offensive aggression without affecting motor,
communicative, or sexual behaviors [20]. In the present
investigation, male rats treated with SRX251 showed nor-
mal sexual motivation as measured by the latency to
mount and thrust toward sexually receptive females.

If the level of general behavioral activity is normal with
V1a receptor blockade and animals show normal sexual
activity, a behavior with high emotional valence, it is rea-
sonable to ask why the BOLD signal, a hemodynamic
response to metabolically active areas, was blunted? One
possible explanation is the effect of SRX251 on cerebral
vascular smooth muscle. Activation of V1a receptors on
vascular smooth muscle promotes vasoconstriction and
can alter blood flow. Blockade of these receptors with a
highly selective antagonist might be expected to reduce
vascular responsivity to endogenous vasopressin. Yet, ani-
mals treated with SRX251 and challenged with 10% CO2
inhalation show BOLD responses similar to untreated
animals (Fig 10). This was also true for animals treated
with fluoxetine (Fig 10). Another explanation for the gen-

eralized reduction in BOLD activation with SRX251 and
fluoxetine is that both compounds are anxiolytics. Vaso-
pressin V1a receptor antagonists and SSRIs have anxiolytic
properties in several different rodent models of anxiety
and stress [120-125]. Interestingly, glutamate receptor
antagonists, another class of anxiolytic compounds signif-
icantly reduce the magnitude of BOLD signal in the som-
atosensory cortex in response to foot shock [126]. It may
be that these three different classes of anxiolytics, despite
their varied mechanisms of action, blunt the coupling
between neuronal activity and blood flow which in this
case might be reflected in a reduced BOLD response to
aggressive and sexual promoting stimuli.

Considerations in data interpretation
There are certain limitations and complications to imag-
ing awake animals. First and foremost is the restraint of
the head, without which it would be impossible to collect
a clean image. Head restraint precludes the study of many
behaviors that require a consummatory act, as the immo-
bilization alone may prevent the motor response that
defines the behavior. Offensive aggression as measured by
the latency to bite and number of bites toward a conspe-
cific is a case in point. However, internal states of arousal
and motivation like, hunger, fear, and aggressive intent
are fertile areas of investigation using fMRI and awake ani-
mals.

Key to the interpretation of these data is the association
between piloerection and aggressive motivation. The
value of piloerection as a signal of aggressive motivation
in rats that are fixed in place for imaging and unable to
show overt attack behaviors lies in consistent findings that
it is the invariant precursor to offensive attack by adult
male rats on other adult males [33,127]. In addition,
manipulations such as castration and replacement of tes-
tosterone, that reduce and restore attack by resident males
on intruders, respectively, produce similar alterations in
the piloerection that precedes this attack [128]. Piloerec-
tion in an aggression context seems to be exclusively asso-
ciated with offensive attack. Lesions of the amygdala that
reduced defensiveness to a cat failed to alter piloerection
or attack toward a male intruder [129]. Moreover, medial
hypothalamic lesions that enhanced defensiveness to the
experimenter, and also mouse killing by the rat subjects,
produced no changes in piloerection or social aggressive-
ness to other male rats [130].

The stress of head restraint and restricted body movement
is compounded by the noise and duration of the imaging
protocols. Consequently, sensory- or drug-induced
changes in MR signal in awake animals can occur against
a backdrop of heightened arousal and stress – conditions
that can affect data interpretation. To address these prob-
lems, protocols have been developed for acclimating ani-
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Controlling for vascular reactivityFigure 10
Controlling for vascular reactivity. Shown are time course data depicting the change in BOLD signal (mean + SD) in 
response to a 2 min challenge with 10% carbon dioxide (CO2). The average activation map for each experimental condition 
(vehicle, SRX251, fluoxetine) is shown overlayed onto the same coronal section of the segmented rat atlas. The solid horizon-
tal line denotes the approximate maximal BOLD signal change under each experimental condition. The photomicrographs 
show coronal sections of the rat brain following intravascular injection of a black latex for delineating cerebral arterial blood 
vessels (adapted from [185]). Note the high density of vessels in the dorsal thalamus and cortex (arrows).
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mals to the environment of the MR scanner and imaging
procedure leading to a reduction in stress hormones levels
and measures of autonomic activity regulated by the sym-
pathetic nervous system [131,132]. Acclimation protocols
have been used to prepare awake animals for a range of
behavioral, neurological and pharmacological imaging
studies, including sexual arousal in monkeys [133], gener-
alized seizures in rats and monkeys [134,135], and expo-
sure to psychostimulants like cocaine [136-138], nicotine
[139] and apomorphine [131,140]. Habituation to the
scanning session is achieved by putting subjects through
several simulated imaging studies. It is recognized that
some stress is still likely associated with the imaging pro-
cedure. For example, piloerection in resident males typi-
cally occurs within 20 sec of introduction of the intruder
male in a homecage test, while the response is delayed for
up to 60 sec in the imaging environment. This delay may
be due to the added complication of head restrain and
stress in this experimental paradigm. Nonetheless, the
piloerection occurs reliably and is highly correlated with
the peak BOLD response in many brain areas.

The imaging of brain changes in response to a novel, sex-
ually receptive female was one of the more vexing prob-
lems we encountered in these studies. In the presence of a
receptive female, the male resident's teeth-chattered. This
did not occur in the homecage environment, only in the
imaging environment. Teeth-chattering normally occurs
under stressful conditions or during psychostimulant
treatments and withdrawal from drug dependence [141-
143]. Teeth chattering has never been observed in any of
our previous male rat imaging studies
[67,132,134,138,144-149] and, interestingly is not
observed in stressed animals imaged for the first time
without any previous acclimation [132]. So it is unique to
the imaging environment where the resident male's head
is restrained and a novel sexually receptive female is just
centimeters away. The teeth-chattering caused an intense
level of physiological noise and despite the use of fast spin
echo pulse sequences the images were distorted and the
data unusable. Interestingly, resident males treated with
oral SRX251 or fluoxetine did not teeth chatter, an effect
we attribute to the anxiolytic activity of these drugs. Con-
sequently, it would be incorrect to assume the neural cir-
cuitry activated in the presence of SRX251 in response to
a novel receptive female is a reflection of the neural cir-
cuitry of sexual motivation alone. Comparing neural cir-
cuitry of aggressive motivation with sexual motivation is,
in itself, an extremely important study, the data of which
would be of interest to many in the field of psychiatry and
behavioral neuroscience. However, the objective of the
present study was to compare the pattern of brain activa-
tion of two drugs know to suppress offensive aggression in
the resident/intruder paradigm. The sexual behavior was a

control for drug specificity in the context of another
highly emotional stimulus.

Positive BOLD signal changes like those reported are a
function of increased cerebral blood flow (CBF), blood
volume and oxygenated hemoglobin. Consequently, per-
turbations in mean arterial blood pressure that affect cer-
ebral blood flow (CBF) could indirectly affect BOLD
signal independent of neuronal activity. Indeed, data on
BOLD imaging obtained from anesthetized rats show a
clear correlation between increased mean arterial blood
pressure, CBF and positive BOLD signal independent of
neuronal activity (see recent papers [150-152]. This break
from cerebral autoregulation in anesthetized rats where
CBF becomes pressure dependent is a critical confound in
pharmacological MRI ([153]. However, in a previous
study from our lab [132] we reported the effect of intense
autonomic arousal (increase in heart rate, body temp, and
respiration) on CBF in conscious male rats. Without any
acclimation, rats were restrained and imaged for regional
CBF using arterial spin labeling. These same animals were
then acclimated to the restraint and imaging procedure
over the next several days and again imaged for regional
CBF. There were no significant difference in CBF between
the stress and non-stressed conditions for any brain
region. These results attest to the effectiveness of cerebral
autoregulation in conscious rats under extreme physiolog-
ical conditions and corroborate an earlier study that
showed no effect of immobilization stress on regional
CBF in conscious rats [154]. It is only under conditions of
severe drug-induced transient hypertension (mean arterial
blood pressure exceeding 155–170 mmHg) in conscious
rats were cerebral autoregulation fails and CBF becomes
pressure dependent [155-158].

The use of a 3D segmented atlas with the co-registration
of multiple subjects into the same volume of interest
allows for region-of-interest based analyses giving meas-
ures of the volume of activation, i.e. voxel numbers, and
the average percent change in BOLD signal for those acti-
vated voxels. This 3D perspective of brain function shows
that stimulus-induced activation in awake animals
includes an increase in BOLD signal and a recruitment of
more brain volume in a region-of-interest. This data anal-
ysis reporting both a change in BOLD signal intensity and
volume of activation has appeared in two of our earlier
studies [137,159] and provides a unique perspective on
neural coding using fMRI. Functional MRI and electro-
physiology in anesthetized animals produces data that
favor a labeled-line or feed forward interpretation of
transmitted information. Following sensory stimulation,
the relay of information to the cerebrum is reflected in a
clean topographical representation at each synaptic relay
of well-defined sensory receptive fields. For example, in
anesthetized rats BOLD signal change in response to elec-
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trical stimulation of the skin of one foot is restricted to the
contra-lateral somatosensory cortex with little or no acti-
vation outside the predicted receptive field [146,148].
However, under awake conditions, the same electrical
stimulus to foot activates a greater area of the contralateral
somatosensory cortex; moreover, the ipsilateral somato-
sensory cortex is activated [146]. The expansion of BOLD
signal across a larger area of the contralateral somatosen-
sory cortex could be explained by better neurovascular
coupling as it is well know that anesthesia blunts the cor-
tical hemodynamic response to sensory stimulation
[146,148,160-163] However, the appearance of BOLD
signal on the ipsilateral somatosensory cortex requires an
integrated response from a distributed neural circuit.

Similarly, in electrophysiology studies, it was shown that
anesthesia restricts and limits the boundaries of receptive
fields [164,165]. However, simultaneous electrophysio-
logical recordings made with multiunit electrodes from
different brain areas in awake animals show a dynamic
spatiotemporal quality to sensory stimulation that stretch
beyond the conventional boundaries of receptive fields.
The fixed topographical representation of sensory infor-
mation as it ascends through the brain stem and thalamus
to the cortex is replaced by distributed, integrated neural
circuits that are highly flexible and can reorganize and
adjust to the flow of sensory information [166-168] Levels
of learning, attention or emotional arousal add another
dimension to the sensory processing [169]. For example,
the auditory cortex has a tonotopic or frequency map for
different sounds. Tonal frequencies activate highly spe-
cific topographical areas of the auditory cortex. When
these tones are associated with stimuli having emotional
valence they spread over a larger cortical area not defined
by the labeled line theory of neuronal coding [170,171].
Consequently, the area of activation in electrophysiology
studies, or in our case, volume of activation in fMRI stud-
ies, is a critical measure in sensory processing. BOLD
imaging using the volume of activation as a surrogate
measure of neuronal activity is in agreement with popula-
tion coding and the spread of signal across traditional
boundaries as assessed with electrophysiology. Recently,
it was reported that discrete micro-stimulation of the vis-
ual cortex of monkeys results in a horizontal spread of
BOLD signal change that exceeds the passive spread of
electrical current, despite the use of anesthesia [172]. This
horizontal spread of BOLD signal in the cortex likely rep-
resents one mechanism contributing to increase in the
volume of activation in fMRI studies.

Conclusion
The "Papez Circuit" Revisited
Early work by Paul Bard [173] showed that emotional
expression or the motor components of aggression in
dogs persisted following ablation of the cortex and the

anterior thalamus. From experimental and clinical stud-
ies, the neuropathologist James Papez proposed a neural
circuit of emotional experience or subjective feelings that
included the hippocampus, anterior thalamic nuclei,
mammillary body and cortex of the gyrus cinguli (e.g.
anterior cingulate, retrosplenial cortex). Afferent connec-
tions from the mammillary bodies to the anterior thala-
mus represented the integration of emotional expression
in the hypothalamus and emotional feelings in the cortex.
Information from the anterior thalamic nuclei is con-
veyed to the gyrus cinguli where it is passed onto the fore-
brain cortex (e.g. prelimbic and orbital cortices) and
spread laterally over the somatosensory, parietal and
auditory cortices. The posterior cingulum (i.e. retrosple-
nial cortex) has an extensive afferent connection to the
hippocampus through the angular bundle. From the hip-
pocampus, information is conveyed to the hypothalamus
and mammillary bodies through the fornix, completing
the circuit. At the time this circuit was proposed the role
of the hippocampus in cognitive function was uncertain.
Moreover, while olfaction and the involvement of the
amygdala with its connections to the stria terminalis and
the lateral hypothalamus were mentioned by Papez, they
were not integrated into the neural circuitry of emotion
because at the time they had no ascribed function. The
putative neural circuit of aggressive motivation described
in this study using fMRI has the key components of the
"Papez circuit" together with the olfactory circuitry and
lateral hypothalamus that were missing from his original
thesis. The distributed neural circuit of aggressive motiva-
tion described herein includes neural substrates contrib-
uting to emotional expression (i.e. cortical and medial
amygdala, BNST, lateral hypothalamus), emotional expe-
rience (i.e. hippocampus, forebrain cortex, anterior cingu-
late, retrosplenial cortex) and the anterior thalamic nuclei
that bridge the motor and cognitive components of
aggressive responding.

Vasopressin/Serotonin and the Control of Aggression
Enhanced serotonin neurotransmission is associated with
a reduction in aggressive responding via interaction with
5-HT1a and 5-HT1b receptors. In the present study, oral
fluoxetine, known to cause accumulation of 5-HT in
hypothalamic intersitium, suppressed aggression and
diminished BOLD activation across the putative neural
circuit of aggressive motivation. Conversely, vasopressin
neurotransmission promotes aggression by interacting
with V1a receptors. Oral SRX251 a V1a receptors antago-
nist, suppressed aggression and produced a general reduc-
tion in BOLD activation in the neural circuitry of
aggression similar to that seen with fluoxetine. The obser-
vation that fluoxetine and SRX251 are similar in their
fMRI profile during suppression of aggressive motivation
is not unexpected. There is evidence that the stimulation
of aggression by vasopressin is regulated by serotonin. The
Page 22 of 35
(page number not for citation purposes)



BMC Neuroscience 2008, 9:111 http://www.biomedcentral.com/1471-2202/9/111
hypothalamus, the primary site of vasopressinergic facili-
tation of aggression, has a high density of 5-HT1a and 5-
HT1b binding sites and receives a dense innervation of 5-
HT fibers and terminals [29,174-176]. Vasopressin neu-
rons in the hypothalamus implicated in the control of
aggression appear to be preferentially innervated by 5-HT
[177]. Fluoxetine blocks aggression facilitated by the
microinjection of vasopressin in the hypothalamus
[116,174,178]. Fluoxetine elevates 5-HT and reduces
vasopressin levels in hypothalamic tissue in hamsters
[116] and rats [179]. Serotonin can also block the activity
of vasopressin following its release in the hypothalamus
as evidenced by the dose-dependent diminution of
aggression with injections combining vasopressin and 5-
HT1a receptor agonist. Enhanced aggression caused by
activation of V1a receptors in the hypothalamus is sup-
pressed by the simultaneous activation of 5-HT1a recep-
tors in the same site [174]. Personality disordered subjects
with a history of fighting and assault show a negative cor-
relation for prolactin release in response to D-fenflu-
ramine challenge, indication of a hyposensitive 5-HT
system. These same subjects show a positive correlation
between CSF levels of vasopressin and aggression [87].
Thus, in humans a hyposensitive 5-HT system may result
in enhanced CNS levels of vasopressin and the facilitation
of aggressive behavior.

While fluoxetine and SRX251 have similar effects on the
putative neural circuitry of aggressive motivation, a mark-
edly different fMRI signature was observed with each com-
pound when treated males were challenged with sexual
motivating stimuli. With V1a receptor blockade there was
activation of the substantia nigra, ventral tegmental area
and their afferent projects to the forebrain limbic cortex as
well as the dorsal and ventral striatum. Measures of sexual
activity in home environment were unaffected by SRX251
treatment. Treatment with fluoxetine, on the other hand,
resulted in a diminished activation profile to sexual moti-
vating stimuli and inhibition of sexual behavior in the
home environment. These opposite effects point to a dif-
ference in drug specificity and underscore the serenic
properties of SRX251, specifically its ability to block
aggression without affecting other appetitive behaviors.

Methods
Animals
Adult male and female Long-Evans rats were purchased
from Harlan (Indianapolis, IN, USA). Animals were
housed as male/female pairs and maintained on a 12:12
hour, light: dark cycle (lights on at 7:00 hr) and provided
food and water ad libitum. Prior to housing, all females
had their oviducts ligated to prevent pregnancy. Tubal
ligation was performed through a single midline incision
along the abdomen while the animals were under 5% iso-
flurane anesthesia. The incised skin and muscle were

sutured and the animals allowed several days to recover
prior to any pairing. Animals were acquired and cared for
in accordance with the guidelines published in the Guide
for the Care and Use of Laboratory Animals (National
Institutes of Health Publications No. 85–23, Revised
1985) and adhere to the National Institutes of Health and
the American Association for Laboratory Animal Science
guidelines. The protocols used in this study were in com-
pliance with the regulations of the Institutional Animal
Care and Use Committee at the University Massachusetts
Medical School.

Behavioral testing
The minimum duration of cohabitation between male/
female pairs before testing was 2–3 weeks. On the day of
an imaging session, male residents were tested for aggres-
sive motivation by placing a novel, adult male intruder
into their homecage for 5 min. It should be noted, this
was the resident's only homecage encounter with a male
intruder. The resident was timed for the onset of piloerec-
tion of the fur along the lower midline back (Fig 11). The
average time (mean ± SD) to piloerection in the homecage
environment was 18 ± 6 sec (n = 20). The "intruders" in
these studies were taken from other male/female pairs.
Following this homecage test, resident males were secured
in the rodent restrainer used for imaging as described
below. The rodent restrainer was positioned in the magnet
facing an empty vivarium. Once positioned in the scan-
ner, the resident was exposed to his female cage mate
alone or his mate plus a novel intruder. The intruder was
not the same animal used in the homecage test. These
presentations were counterbalanced resulting in each res-
ident being imaged twice for a total of 20 separate imag-
ing sessions for the 10 animals. The time between the two
imaging sessions was 4–5 days. During the imaging ses-
sion it was possible to observe the back of the restrained
resident (Fig 11) and time the onset of piloerection. The
average time (mean ± SD) to piloerection in the magnet
was 62 ± 11 sec. It should be noted that the vivarium was
positioned in the magnet at the start of the study prior to
onset of imaging.

Unique to these studies was the presentation of the stim-
ulus animals in the magnet. To accomplish this it was nec-
essary to design a vivarium that could be positioned in the
bore of the scanner within centimeters of the male resi-
dent being imaged. The vivarium is shown in Fig 11 and
consists of a Plexiglas tube 14 cm in diameter and 42 cm
in length. The removable end caps of the vivarium are cov-
ered with a large mesh (0.5 × 0.5 in) copper screen allow-
ing the occupants of the vivarium to be seen, smelled and
heard by the animal being imaged. The vivarium is built
with a perforated floor. Prior to an imaging session, the
area beneath the floor was filled with bedding from the
homecage of the male resident being imaged.
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Piloerection in the homecage and imaging environmentFigure 11
Piloerection in the homecage and imaging environment. The top photograph shows a male and female resident in 
their homecage moments after the introduction of a novel adult male intruder. The insert shows a photograph of piloerection 
along the midline back of the male resident. The bottom photograph shows a male resident with his head secured in the animal 
restrainer used for imaging. The animal's body is unrestrained and the body holder is open at the top to allow visualization of 
the animal's back. A vivarium designed to fit into the bore of the scanner immediately in front of the male resident is shown 
housing the resident's female partner and a novel adult male intruder. This presentation of stimulus animals in the vivarium elic-
its piloerection in the restrained male resident, an autonomic response that can be observed in the bore of the scanner during 
data acquisition.
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In these studies, we did not collect physiological data dur-
ing an imaging session. Instead, we ran a pilot looking at
changes in respiration and heart rate for resident males
exposed to their female mate alone (n = 3) or their mate
plus the novel male intruder (n = 3) on the lab bench
under the conditions shown in Fig 11. Within the first
min of mate presentation, the resident males showed a
significant increase in heart rate (mean ± SD) from base-
line of 402 ± 11 to 428 ± 6 (p < 0.01) and respiration
(mean ± SD) from baseline of 68 ± 5 to 90 ± 13 (p < 0.01).
Similarly, within the first min of mate/intruder presenta-
tion, the resident males showed a significant increase in
heart rate from a baseline of 384 ± 10 to 425 ± 30 (p <
0.05) and respiration from baseline of 67 ± 8 to 81 ± 9 (p
< 0.05). There were no significant differences in these
measures of autonomic arousal between stimulus condi-
tions.

Drug treatment
In a second group of ten male/female pairs, resident males
were given an oral dose of SRX251 (Azevan Pharmaceuti-
cals, Bethlehem PA). SRX251 is a highly selective, orally
active vasopressin V1a receptor antagonist that can cross
the blood brain barrier [20]. In pilot studies, male resi-
dent rats were tested for inhibition of piloerection in
response to escalating doses of SRX251 (1, 2.5, 5 mg/kg).
Over a five min observation period, only the dose of 5 mg/
kg blocked piloerection in all animals tested. Conse-
quently, on the day of imaging, male residents were given
an oral dose of 5 mg/kg SRX251. Approximately 90–120
min later male residents were imaged as described above.
During the imaging session they were presented with a
novel male intruder in the presence of their female cage
mate.

In a third group of ten male/female pairs, resident male
rats were given an oral dose of fluoxetine. In pilot studies,
male resident rats were tested for inhibition of piloerec-
tion in response to escalating oral doses of fluoxetine (1,
2.5, 5 mg/kg). Over a five min observation period only the
dose of 5 mg/kg blocked piloerection in all animals tested.
Animals treated with this threshold dose of fluoxetine
were imaged 90–120 min later as described above.

Drug treatment and behavioral specificity
To test if the serenic activity of SRX251 and fluoxetine
were specific to aggression and not generalized to all
highly emotional stimuli associated with autonomic
arousal, drug treated male residents were tested for sexual
motivation in the presence of a novel female. Novel
females were ovariectomized using the same surgical
approach described for tubal ligation. Following recovery,
animals were treated with 50 μg/kg estradiol IP for 2 con-
secutive days. On the third day they were given an IP injec-
tion of 500 μg/kg of progesterone and subsequently test

3–4 hrs later. This regimen of gonadal hormone treatment
induces estrus, sexual receptivity and lordosis in response
to tactile stimulation. In a homecage test, the resident
female was removed and replaced with a novel receptive
female. Resident males were tested for latency to mount
the female 90–120 min following oral treatment with 5
mg/kg SRX251 or fluoxetine. The latency to mount and
thrust the novel female (mean ± SD) was 92.6 ± 11.4 and
102.4 ± 11.6, (p < 0.08) for vehicle and SRX251, respec-
tively. Animals treated with oral fluoxetine did not mount
the receptive female in the five min test period. Immedi-
ately after this homecage test, male residents were imaged
as described above. During the imaging session (n = 10
SRX251; n = 10 fluoxetine) they were presented with a
novel sexually receptive female. It should be noted; under
the present experimental conditions it was not possible to
obtain clean images of brain activity in response to a
receptive female without SRX251 or fluoxetine pretreat-
ment. Interestingly, the cause of this problem was related
to teeth-chattering. Teeth chattering normally occurs
under stressful conditions or during psychostimulant
treatments and withdrawal from drug dependent condi-
tions [141-143]. Teeth-chattering did not occur in the
homecage environment, only in the imaging environ-
ment. The teeth-chattering caused an intense level of
physiological noise and despite the use of fast spin echo
pulse sequences the images were distorted and the data
unusable. However, in the presence of SRX251 or fluoxet-
ine, teeth-chattering was not observed.

Imaging awake animals
Key to imaging awake animals is controlling for motion
artifact. Any minor head movement distorts the image
and may also create a change in signal intensity that can
be mistaken for stimulus-associated changes in brain
activity [180]. In addition to head movement, motion
outside the field of view caused by respiration, swallowing
and muscle contractions in the face and neck are other
major sources of motion artifact [181,182]. To minimize
motion artifacts, studies were performed with a multi-
concentric dual-coil, small animal restrainer develop for
imaging awake rodents (Insight Neuroimaging Systems,
LLC, Worcester MA). In brief, just prior to the imaging ses-
sion, animals were anesthetized with 2–3% isoflurane. A
topical anesthetic of 10% lidocaine gel was applied to the
skin and soft tissue around the ear canals and over the
bridge of the nose. A plastic semicircular headpiece with
blunted ear supports that fit into the ear canals was posi-
tioned over the ears. The head was placed into a cylindri-
cal head holder with the animal's canines secured over a
bite bar and ears positioned inside the head holder with
adjustable screws fitted into lateral sleeves. An adjustable,
receive only, surface coil built into the head holder was
pressed firmly on the head and locked into place. The
body of the animal was placed into a body restrainer. The
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body restrainer "floats" down the center of the chassis
connecting at the front and rear end-plates and buffered
by rubber gaskets. The head piece locks into a mounting
post on the front of the chassis. This design isolates all of
the body movements from the head restrainer and mini-
mizes motion artifact. Once the animal was positioned in
the body holder, a transmit only, volume coil was slid
over the head restrainer and locked into position.

Acclimating animals to the imaging protocol
Animals were anesthetized with isoflurane as described
above for securing the animal into the restrainer. When
fully conscious, the restraining unit was placed into a
black opaque tube "mock scanner" with a tape-recording
of an MRI pulse sequence. This acclimation protocol
lasted for 60 min in order to simulate the bore of the mag-
net and an imaging protocol. This procedure was repeated
every other day for four days. With this procedure, rats
show a significant decline in respiration, heart rate, motor
movements and plasma CORT when comparing the first
to the last acclimation periods [132]. The reduction in
autonomic and somatic measures of arousal and stress
improve the signal resolution and quality of the MR
images.

Imaging protocol
Experiments were conducted in a Bruker Biospec 4.7-T/
40-cm horizontal magnet (Oxford Instrument, Oxford,
U.K.) equipped with a Biospec Bruker console (Bruker,
Billerica, MA U.S.A) and a 20-G/cm magnetic field gradi-
ent insert (ID = 12 cm) capable of a 120-μs rise time
(Bruker). Radiofrequency signals were sent and received
with the dual coil electronics built into the animal
restrainer [147]. The volume coil for transmitting RF sig-
nal features an 8-element microstrip line configuration in
conjunction with an outer copper shield. The arch-shaped
geometry of the receiving surface coil provides excellent
coverage and high signal-to-noise. To prevent mutual coil
interference, the volume and surface coils were actively
tuned and detuned.

Functional images were acquired using a multi-slice fast
spin echo sequence. A single data acquisition included
twelve, 1.2 mm slices collected in 6 sec (FOV 3.0 cm; data
matrix 64 × 64; TR 1.43 sec, Eff TE 53.3 msec, TE 7 msec;
RARE factor 16, NEX 1). This sequence was repeated 100
times in a 10 min imaging session consisting of 5 min of
baseline data followed by 5 min of stimulation data. At
the beginning of each imaging session a high resolution
anatomical data set was collected using a RARE pulse
sequence (12 slice; 1.2 mm; FOV 3.0 cm; 256 × 256; TR
2.1 sec; TE 12.4 msec; NEX 6; 7 min acquisition time).

Controlling for electromagnetic interference in the 
vivarium model
The vivarium model used in these studies is novel to the
field of animal imaging. Allowing unrestrained animals to
walk around a confined area in the bore of the magnet
during image acquisitions raises questions about motion
artifact arising from electromagnetic interference. To con-
trol for this issue a phantom positioned in the rat
restrainer was imaged for a duration of 10 min consisting
of 5 min of baseline data followed by 5 min following the
introduction of two adult male rats into the vivarium (n =
4). The imaging protocol was identical to the fMRI proto-
col described above. The change in MR signal following
the introduction of freely mobile rats into the bore of the
magnet did not differ by more than 1% for any of the four
control studies (Fig 12).

Controlling for drift
Low frequency drift is a common problem in time series
fMRI studies and contributes to signal variability. Instabil-
ity in temperature regulation with high performance gra-
dients is one source of the problem; however,
physiological noise and head motion are also considered
to be contributing factors to drift [183]. The occurrence of
false positive voxels is a concern particularly in the simple
off-on activation paradigm used in these studies compar-
ing the average baseline signal for a given voxel to its aver-
age post-stimulation signal. To control for this issue,
awake rats (n = 4) were exposed to a 18 min long imaging
protocol mimicking that described above for the fMRI
studies. A 6 min long high resolution anatomical scan was
followed two min later by a 10 min long fMRI time series.
During the fMRI time series there was no stimulus presen-
tation. The change in MR signal over the 10 min period
mimicking the fMRI study without the presentation of

Controlling for electromagnetic interferenceFigure 12
Controlling for electromagnetic interference. Shown 
are data from four experiments using a phantom to assess 
the change in MR signal over a 10 min imaging session when 
two adult male rats are added to the vivarium (arrow).
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stimulus animals in the vivarium did not differ by more
than 2% for any of the four animals studied (Fig 13).
These data corroborate our previous work reporting a
baseline variability in MR signal of ca 2% in fully con-
scious animals imaged with an INSL rodent restrainer sys-
tem and dual coil RF electronics at 4.7T [136,137,144].
These data also show that drift is not an issue in the
present study using an fMRI scanning protocol of 10 min
in duration. However, it should be noted, that in our
hands using the same technology, fMRI scanning proto-
cols that exceed 20 min in duration show drift.

Controlling for vascular responsivity
V1a receptors are found on arterial smooth muscle and
mediate vasopressin-induced vasoconstriction. Since
SRX251 is a selective, long acting V1a antagonist it would
be expected to block these peripheral vascular receptors in
addition to those localized to neurons in the CNS. While
vasopressin is not involved in the moment-to-moment
regulation of vascular tone and baseline blood pressure
[184], there is always the possibility that SRX251 can
affect vascular responsivity and the BOLD signal. To con-
trol for this, male rats were treated with a 5 mg/kg oral
dose of SRX251 (n = 4) or water vehicle (n = 4). Ninety
min later animals were imaged as described above. Dur-
ing a 10 min imaging session animals were exposed to
10% carbon dioxide using an off-on, box-car design of 2
min intervals. There was no ostensible difference between
vehicle and SRX251 treatment in vascular responsivity to

the direct vasodilatory effects of carbon dioxide (Fig 10).
Both treatments showed a similar time course of BOLD
activation and recovery with signal changes exceeding 6%.
The average BOLD activation map for each treatment was
also very similar with the cortex and thalamus showing
robust signal change in response to carbon dioxide. These
same carbon dioxide challenge studies were run for ani-
mals treated with 5 mg/kg fluoxetine (Fig 10) and showed
no apparent affect on vascular responsivity with blockade
of the serotonin transporter. Interestingly, the activation
maps for the three experimental conditions show intense
signal change over the dorsal thalamus. Vascular casts of
coronal sections of rat brain show a high density of small
arterial blood vessels in this area [185].

Assessing motion artifact
Subject motion is an important issue in fMRI data analy-
sis; even the slightest movement during the scan can dis-
place voxel location corresponding to a distinct physical
area. Unlike human fMRI, this issue is more prevalent in
small animals like rats as voxel size is much larger than
physical (anatomical) area in the brain. The change in sig-
nal intensity due to motion can be (and usually is) greater
than BOLD signal especially at the edge of the brain and
tissue boundaries which essentially leads to artifact in the
activation map. To avoid this, "motion correction" has
become common preprocessing step in fMRI data analy-
sis. Commonly used motion correction tools include AIR
[186-188], AFNI [189], and statistical parametric map-
ping (SPM) realign tools [190].

However, it has been reported that motion correction may
induce spurious activation in motion-free fMRI data
[191]. This artifact stems from the fact that activated areas
behave like biasing outliers for the difference of square-
based measures usually driving such registration meth-
ods. This problem is amplified in case of small animals
where the BOLD signal change can be 10% or greater over
baseline. Indeed, if motion parameters are included in the
general linear model for event-related data, it makes little
difference if motion correction is actually applied to the
data [192].

The experiments conducted in this work are a single epoch
event-related design. To assess false activation due to sub-
ject motion we collected fMRI data from awake rats (n =
8) over a 10 min scanning session in the absence of any
stimulation. From these empirical data, a series of virtual
fMRI data were numerically generated using a tri-linear
interpolation algorithm with Gaussian noise and a preset
amount of rigid body motion in random direction. The
amount of motion introduced was in increment of 1/10
of a voxel (ca 50 μm) up to 1 voxel (486 μm). The data
were analyzed with statistical t tests on each voxel for each
subject within their original coordinate system. The con-

Controlling for driftFigure 13
Controlling for drift. Shown are data from four experi-
ments imaging a fully conscious rat without presentation of a 
stimulus. The arrows denote the time when a stimulus would 
have been introduced in a typical imaging session. The sche-
matic shown below outlines the time course of the total 
scanning session including the initial high resolution anatomi-
cal data set. These data would control for any drifts associ-
ated with the instrumentation or change in the animal's 
physiology.
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trol window was the first 50 time periods (5 min) where
as the stimulation window was the remaining 50 time
periods (5 min) as described for the fMRI studies above.
The t test statistics used a 95% confidence level, two-tailed
distributions, and heteroscedastic variance assumptions.
In this case a multiple comparison control (false detection
rate) was not used to avoid suppression of any spurious
activation. There is no significant change in BOLD signal
or the number of activated voxels up to ca 300 μm (or 6/
10 of voxel) motion. Both, number of voxels and percent
BOLD signal, increases dramatically as it approaches one
voxel of motion.

For each subject (n = 71) in this work, rigid body motion
in x, y and z direction was computed with Stimulate [193]
software using center of intensity method. Standard devi-
ation of this data gives measure of how widely spread the
motion is for each subject. We set conservative criteria of
120 μm standard deviation of motion in any direction as
acceptance criteria. In these experiments, motion in the z
and x direction was small as compared to y direction. Ani-
mals showing an average displacement exceeding 25% of
the total inplane (X-Y) voxel resolution (> 120 μm out of
468 μm) or more than 25% displacement in the slice (Z)
direction (> 300 μm out of 1200 μm slice thickness) were
excluded. Most of the motion was in y-direction (64 μm ±
42 μm) and can be attributed to limitations in the design
of the rat head holder. A plot of the x-y-z spread of the

standard deviation of the 71 animals tested showed 9 ani-
mals had motion greater that defined criteria and were
excluded from data analysis (Fig 14). The remaining 62
animals fell under the acceptance criteria and were
included in the study without any motion correction.

Data analysis
Anatomy images for each subject were obtained at a reso-
lution of 2562 × 12 slices and a FOV of 30 mm with a slice
thickness of 1.2 mm. Subsequent functional imaging was
performed at a resolution of 642 × 12 slices with the same
FOV and slice thickness. Each subject was registered to a
segmented rat brain atlas. The alignment process was
facilitated by an interactive graphic user interface. The aff-
ine registration involved translation, rotation, and scaling
in all three dimensions, independently. The matrices that
transformed the subject's anatomy to the atlas space were
used to embed each slice within the atlas. All transformed
pixel locations of the anatomy images were tagged with
the segmented atlas major and minor regions creating a
fully segmented representation of each subject. The
inverse transformation matrix [Ti]-1for each subject (i) was
also calculated.

The fully segmented rat brain atlas has the potential to
delineate and analyze more than 1200 distinct anatomical
volumes within the brain. Because the in-plane spatial res-
olution of our functional scans (data matrix, 64 × 64; FOV
3.0 cm) is 486 μm2 with a depth of 1200 μm, many small
brain areas (e.g. nucleus of the lateral olfactory tract) can-
not be resolved; or, if they could be resolved they would
be represented by one or two voxels only (e.g. arcuate
nucleus of the hypothalamus). Consequently, small
detailed regions are not included in the analysis or are
grouped into larger "minor volumes" of similar anatomi-
cal classification. For example, in these studies we have
the basal nucleus of the amygdala listed as a minor vol-
ume. This area is a composition of the basomedial ante-
rior part, basomedial posterior part, basolateral anterior
part and basolateral posterior part with a composite voxel
size of 54. In this study, 12 brain slices were collected
extending from the tip of the forebrain to the end of the
cerebrum stopping at the midbrain just rostral to the cer-
ebellum. Within these rostral/caudal boundaries we
delineated 83 minor volumes. In addition, we grouped
brain areas into "major volumes" (e.g., amygdala, hippoc-
ampus, hypothalamus, and cerebrum). The volume of
activation (number of significant voxels) can be visual-
ized in these 3D major and minor anatomical groupings
(Fig 1). We also combined minor volumes to form func-
tional neuroanatomical pathways as shown in Fig 2.

Each scanning session consisted of 100 data acquisitions
with a period of 6 sec each for a total lapse time of 600 sec
or 10 min. The control window was the first 50 scan rep-

Plotting subjects that meet experimental criteria for accepta-ble voxel movementFigure 14
Plotting subjects that meet experimental criteria for 
acceptable voxel movement. Shown are motion data in 
the X Y directions for 71 animals. Data points within the red 
lines marked at 120 μm were judged to be acceptable. Note 
that unacceptable motion was limited to the Y direction 
(movement of the head up-and-down near the neck). The 
insert shows a rat positioned in the head restrainer.
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etitions while the stimulation window was 51–100 scans
post-stimulation period. Statistical t tests were performed
on each voxel (4,800 in number) of each subject within
their original coordinate system. The baseline threshold
was set at 2%. The t test statistics used a 95% confidence
level, two-tailed distributions, and heteroscedastic vari-
ance assumptions. As a result of the multiple t test analy-
ses performed, a false-positive detection controlling
mechanism was introduced [194]. This subsequent filter
guaranteed that, on average, the false-positive detection
rate was below our cutoff of 0.05. The formulation of the
filter satisfied the following expression:

where P(i) is the p value based on the t test analysis. Each
pixel (i) within the region of interest (ROI) containing (V)
pixels was ranked based on its probability value. The false-
positive filter value q was set to be 0.05 for our analyses,
and the predetermined constant c(V) was set to unity,
which is appropriate for data containing Gaussian noise
such as fMRI data [194]. These analysis settings provided
conservative estimates for significance. Those pixels
deemed statistically significant retained their percentage
change values (stimulation mean minus control mean)
relative to control mean. All other pixel values were set to
zero.

A statistical composite was created for each group of sub-
jects. The individual analyses were summed within
groups. The composite statistics were built using the
inverse transformation matrices. Each composite pixel
location (i.e., row, column, and slice), premultiplied by
[Ti]-1, mapped it within a voxel of subject (i). A tri-linear
interpolation of the subject's voxel values (percentage
change) determined the statistical contribution of subject
(i) to the composite (row, column, and slice) location.
The use of [Ti]-1 ensured that the full volume set of the
composite was populated with subject contributions. The
average value from all subjects within the group deter-
mined the composite value. The BOLD response maps of
the composite were somewhat broader in their spatial
coverage than in an individual subject; so only average
number of activated pixels that has highest composite per-
cent change values in particular ROI was displayed in
composite map. Activated composite pixels are calculated
as follows:

The composite percent change for the time history graphs
for each region was based on the weighted average of each
subject, as follows:

where N is number of subjects.

The percent change in BOLD signal for time history
graphs (see Figs 6, 7, 8) were only calculated as an average
of the positive voxels within a volume of interest and did
not include negative voxels. To average both positive and
negative voxels assumes that a volume of interest, e.g. the
somatosensory cortex, is functionally homogenous, i.e. all
cortical columns do the same thing and their combined
activity (percent change in BOLD signal) reflects a com-
mon metabolic change in response to a stimulus. Evi-
dence would suggest that anatomically delineated brain
areas as shown in different 2D digitized atlases and our
own 3D atlas may not be functionally homogenous
[195,196]. There is a growing body of literature from
humans and animals using multiple imaging techniques
that excitatory and inhibitory inputs to the cortex produce
"surround inhibition" around the principle cortical col-
umn receiving direct thalamic input. The hemodynamic
response to this well recognized cortical event is a
decrease in blood oxygenation and blood volume extend-
ing over 1–2 mm [197-202]. The voxels in the area of "sur-
round inhibition" displaying negative BOLD do not
reflect neurons engaged in a network response to the acti-
vation of a central cortical column; instead, this is a pas-
sive and active event of arteriole vasoconstriction
shunting blood to the active column [197]. For this rea-
son we chose to eliminate averaging negative BOLD and
positive BOLD voxels in a volume of interest. To do so, we
believe reduces and masks the true change in active BOLD
signal.

Abbreviations
ACA: anterior cingulated; ACB: accumbens; AH: anterior
hypothalamus; AL: agranular insular cortex; ALP: anterior
lobe pituitary; AM: anteromedial nucleus thalamus; AON:
anterior olfactory nucleus; AUD: auditory cortex; AV:
anteroventral nucleus thalamus; BNST: bed nucleus stria
terminalis; CA1: hippocampus; CA3: hippocampus; COA:
cortical nucleus amygdale; DG: dentate gyrus; DS: dorsal
striatum; ENT: entorhinal cortex; IC: inferior colliculi;
ILA: infralimbic cortex; IPN: interpeduncular nucleus;
LHA: lateral hypothalamus; LP: lateral posterior nucleus
thalamus; LS: lateral septum; MEA: medial amygdale;
MM: mammillary nuclei; MO: motor cortex; MRN: mes-
encephalic reticular nucleus; ORB: orbital cortex; OT:
olfactory tubercle; PAG: periaqueductal gray; PIR: piri-
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PVN: paraventricular nucleus hypothalamus; PVT: par-
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mus; RSP: retrosplenial cortex; RPH: raphe; SC: superior
colliculi; SN: substantia nigra; SSP: primary somatosen-
sory cortex; VMH: ventromedial hypothalamus; VP: ven-
tral posterior nucleus thalamus; VTA: ventral tegmental
area
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