78 research outputs found

    Testing Missing At Random Using Instrumental Variables

    Get PDF
    This paper proposes a test for missing at random (MAR). The MAR assumption is shown to be testable given instrumental variables which are independent of response given potential outcomes. A nonparametric testing procedure based on integrated squared distance is proposed. The statistic's asymptotic distribution under the MAR hypothesis is derived. In particular, our results can be applied to testing missing completely at random (MCAR). A Monte Carlo study examines finite sample performance of our test statistic. An empirical illustration analyzes the nonresponse mechanism in labor income questions

    Goodness-of-fit tests based on series estimators in nonparametric instrumental regression

    Get PDF
    This paper proposes several tests of restricted specification in nonparametric instrumental regression. Based on series estimators, test statistics are established that allow for tests of the general model against a parametric or nonparametric specification as well as a test of exogeneity of the vector of regressors. The tests are asymptotically normally distributed under correct specification and consistent against any alternative model. Under a sequence of local alternative hypotheses, the asymptotic distribution of the tests is derived. Moreover, uniform consistency is established over a class of alternatives whose distance to the null hypothesis shrinks appropriately as the sample size increases

    Testing Missing at Random using Instrumental Variables

    Get PDF
    This paper proposes a test for missing at random (MAR). TheMARassumption is shown to be testable given instrumental variables which are independent of response given potential outcomes. A nonparametric testing procedure based on integrated squared distance is proposed. The statistic’s asymptotic distribution under the MAR hypothesis is derived. We demonstrate that our results can be easily extended to a test of missing completely at random (MCAR) and missing completely at random conditional on covariates X (MCAR(X)). A Monte Carlo study examines finite sample performance of our test statistic. An empirical illustration concerns pocket prescription drug spending with missing values; we reject MCAR but fail to reject MAR

    Adaptive, Rate-Optimal Hypothesis Testing in Nonparametric IV Models

    Get PDF
    We propose a new adaptive hypothesis test for polyhedral cone (e.g., monotonicity, convexity) and equality (e.g., parametric, semiparametric) restrictions on a structural function in a nonparametric instrumental variables (NPIV) model. Our test statistic is based on a modified leave-one-out sample analog of a quadratic distance between the restricted and unrestricted sieve NPIV estimators. We provide computationally simple, data-driven choices of sieve tuning parameters and adjusted chi-squared critical values. Our test adapts to the unknown smoothness of alternative functions in the presence of unknown degree of endogeneity and unknown strength of the instruments. It attains the adaptive minimax rate of testing in L2. That is, the sum of its type I error uniformly over the composite null and its type II error uniformly over nonparametric alternative models cannot be improved by any other hypothesis test for NPIV models of unknown regularities. Data-driven confidence sets in L2 are obtained by inverting the adaptive test. Simulations con rm that our adaptive test controls size and its nite-sample power greatly exceeds existing non-adaptive tests for monotonicity and parametric restrictions in NPIV models. Empirical applications to test for shape restrictions of differentiated products demand and of Engel curves are presented

    Nonparametric Regression with Selectively Missing Covariates

    Get PDF
    We consider the problem of regression with selectively observed covariates in a nonparametric framework. Our approach relies on instrumental variables that explain variation in the latent covariates but have no direct effect on selection. The regression function of interest is shown to be a weighted version of observed conditional expectation where the weighting function is a fraction of selection probabilities. Nonparametric identification of the fractional probability weight (FPW) function is achieved via a partial completeness assumption. We provide primitive functional form assumptions for partial completeness to hold. The identification result is constructive for the FPW series estimator. We derive the rate of convergence and also the pointwise asymptotic distribution. In both cases, the asymptotic performance of the FPW series estimator does not suffer from the inverse problem which derives from the nonparametric instrumental variable approach. In a Monte Carlo study, we analyze the finite sample properties of our estimator and we demonstrate the usefulness of our method in analyses based on survey data. In the empirical application, we focus on two different applications. We estimate the association between income and health using linked data from the SHARE survey data and administrative pension information and use pension entitlements as an instrument. In the second application we revisit the question how income affects the demand for housing based on data from the Socio-Economic Panel Study. In this application we use regional income information on the residential block level as an instrument. In both applications we show that income is selectively missing and we demonstrate that standard methods that do not account for the nonrandom selection process lead to significantly biased estimates for individuals with low income

    Specification Testing in Random Coefficient Models

    Get PDF
    In this paper, we suggest and analyze a new class of specification tests for random coefficient models. These tests allow to assess the validity of central structural features of the model, in particular linearity in coefficients, generalizations of this notion like a known nonlinear functional relationship, or degeneracy of the distribution of a random coefficient, i.e., whether a coefficient is fixed or random, including whether an associated variable can be omitted altogether. Our tests are nonparametric in nature, and use sieve estimators of the characteristic function. We provide formal power analysis against global as well as against local alternatives. Moreover, we perform a Monte Carlo simulation study, and apply the tests to analyze the degree of nonlinearity in a heterogeneous random coefficients demand model. While we find some evidence against the popular QUAIDS specification with random coefficients, it is not strong enough to reject the specification at the conventional significance level
    corecore