7 research outputs found

    Induced pluripotent stem cell-derived mesodermal progenitors offer a translatable cell source to treat muscular dystrophies

    No full text
    Muscular dystrophies are a group of neuromuscular disorders primarily characterized by progressive muscle weakness. As both cardiac and skeletal muscle are affected, patients would benefit from stem cells/progenitors that has the ability to regenerate both tissues. Recently, our group has successfully developed a protocol to generate induced PSC–derived mesodermal progenitors (MiPs) that have the ability to regenerate both cardiac and skeletal muscle. Although promising, several issues remain to be addressed. Firstly, the MiPs lack clinical potential as they are derived through a serum-containing embryoid body-induced differentiation protocol. Therefore, we aimed to derive a new pool of mesodermal progenitors through a fully chemical-defined monolayer approach, thereby enhancing their clinical translatability. Secondly, functional improvement of both tissues was only moderate. To address this problem, focus was put on valproic acid (VPA), a small molecule that can serve as a histone deacetylase inhibitor. VPA has already been implemented in both myogenic capacity of adult stem cells and early cardiac specification. Furthermore, a connection has been found between VPA and Notch1 pathway, a signaling pathway found in important in both myogenic and cardiac differentiation. Nevertheless, little is known about its effect on early myogenic differentiation. Therefore, we will study the effect of VPA the myogenic capacity of the MiPs and whether this effect is mediated through the Notch1 signaling pathway.status: publishe

    (Epi)genetic Modifications in Myogenic Stem Cells: From Novel Insights to Therapeutic Perspectives

    No full text
    The skeletal muscle is considered to be an ideal target for stem cell therapy as it has an inherent regenerative capacity. Upon injury, the satellite cells, muscle stem cells that reside under the basal lamina of the myofibres, start to differentiate in order to reconstitute the myofibres while maintaining the initial stem cell pool. In recent years, it has become more and more evident that epigenetic mechanisms such as histon modifications, DNA methylations and microRNA modulations play a pivatol role in this differentiation process. By understanding the mechanisms behind myogenesis, researchers are able to use this knowledge to enhance the differentiation and engraftment potential of different muscle stem cells. Besides manipulation on an epigenetic level, recent advances in the field of genome-engineering allow site-specific modifications in the genome of these stem cells. Combining epigenetic control of the stem cell fate with the ability to site-specifically correct mutations or add genes for further cell control, can increase the use of stem cells as treatment of muscular dystrophies drastically. In this review, we will discuss the advances that have been made in genome-engineering and the epigenetic regulation of muscle stem cells and how this knowledge can help to get stem cell therapy to its full potential.status: publishe

    (Epi)genetic Modifications in Myogenic Stem Cells: From Novel Insights to Therapeutic Perspectives

    Get PDF
    The skeletal muscle is considered to be an ideal target for stem cell therapy as it has an inherent regenerative capacity. Upon injury, the satellite cells, muscle stem cells that reside under the basal lamina of the myofibres, start to differentiate in order to reconstitute the myofibres while maintaining the initial stem cell pool. In recent years, it has become more and more evident that epigenetic mechanisms such as histon modifications, DNA methylations and microRNA modulations play a pivatol role in this differentiation process. By understanding the mechanisms behind myogenesis, researchers are able to use this knowledge to enhance the differentiation and engraftment potential of different muscle stem cells. Besides manipulation on an epigenetic level, recent advances in the field of genome-engineering allow site-specific modifications in the genome of these stem cells. Combining epigenetic control of the stem cell fate with the ability to site-specifically correct mutations or add genes for further cell control, can increase the use of stem cells as treatment of muscular dystrophies drastically. In this review, we will discuss the advances that have been made in genome-engineering and the epigenetic regulation of muscle stem cells and how this knowledge can help to get stem cell therapy to its full potential

    Valproic acid stimulates myogenesis in pluripotent stem cell-derived mesodermal progenitors in a NOTCH-dependent manner

    No full text
    Muscular dystrophies are debilitating neuromuscular disorders for which no cure exists. As this disorder affects both cardiac and skeletal muscle, patients would benefit from a cellular therapy that can simultaneously regenerate both tissues. The current protocol to derive bipotent mesodermal progenitors which can differentiate into cardiac and skeletal muscle relies on the spontaneous formation of embryoid bodies, thereby hampering further clinical translation. Additionally, as skeletal muscle is the largest organ in the human body, a high myogenic potential is necessary for successful regeneration. Here, we have optimized a protocol to generate chemically defined human induced pluripotent stem cell-derived mesodermal progenitors (cdMiPs). We demonstrate that these cells contribute to myotube formation and differentiate into cardiomyocytes, both in vitro and in vivo. Furthermore, the addition of valproic acid, a clinically approved small molecule, increases the potential of the cdMiPs to contribute to myotube formation that can be prevented by NOTCH signaling inhibitors. Moreover, valproic acid pre-treated cdMiPs injected in dystrophic muscles increase physical strength and ameliorate the functional performances of transplanted mice. Taken together, these results constitute a novel approach to generate mesodermal progenitors with enhanced myogenic potential using clinically approved reagents

    Molecular imaging of human embryonic stem cells stably expressing human PET reporter genes after zinc finger nucleases-mediated genome editing

    No full text
    Molecular imaging is indispensable for determining the fate and persistence of engrafted stem cells. Standard strategies for transgene induction involve the use of viral vectors prone to silencing and insertional mutagenesis or the use of nonhuman genes. Methods: We used zinc finger nucleases to induce stable expression of human imaging reporter genes into the safe-harbor locus adeno-associated virus integration site 1 in human embryonic stem cells. Plasmids were generated carrying reporter genes for fluorescence, bioluminescence imaging, and human PET reporter genes. Results: In vitro assays confirmed their functionality, and embryonic stem cells retained differentiation capacity. Teratoma formation assays were performed, and tumors were imaged over time with PET and bioluminescence imaging. Conclusion: This study demonstrates the application of genome editing for targeted integration of human imaging reporter genes in human embryonic stem cells for long-term molecular imaging.status: publishe

    Molecular imaging of human embryonic stem cells stably expressing human PET reporter genes after zinc finger nuclease-mediated genome editing

    No full text
    Molecular imaging is indispensable for determining the fate and persistence of engrafted stem cells. Standard strategies for transgene induction involve the use of viral vectors prone to silencing and insertional mutagenesis or the use of nonhuman genes. Methods: We used zinc finger nucleases to induce stable expression of human imaging reporter genes into the safe-harbor locus adeno-associated virus integration site 1 in human embryonic stem cells. Plasmids were generated carrying reporter genes for fluorescence, bioluminescence imaging, and human PET reporter genes. Results: In vitro assays confirmed their functionality, and embryonic stem cells retained differentiation capacity. Teratoma formation assays were performed, and tumors were imaged over time with PET and bioluminescence imaging. Conclusion: This study demonstrates the application of genome editing for targeted integration of human imaging reporter genes in human embryonic stem cells for long-term molecular imaging

    Interstitial Cell Remodeling Promotes Aberrant Adipogenesis in Dystrophic Muscles

    Get PDF
    Fibrosis and fat replacement in skeletal muscle are major complications that lead to a loss of mobility in chronic muscle disorders, such as muscular dystrophy. However, the in vivo properties of adipogenic stem and precursor cells remain unclear, mainly due to the high cell heterogeneity in skeletal muscles. Here, we use single-cell RNA sequencing to decomplexify interstitial cell populations in healthy and dystrophic skeletal muscles. We identify an interstitial CD142-positive cell population in mice and humans that is responsible for the inhibition of adipogenesis through GDF10 secretion. Furthermore, we show that the interstitial cell composition is completely altered in muscular dystrophy, with a near absence of CD142-positive cells. The identification of these adipo-regulatory cells in the skeletal muscle aids our understanding of the aberrant fat deposition in muscular dystrophy, paving the way for treatments that could counteract degeneration in patients with muscular dystrophy.status: publishe
    corecore