79 research outputs found

    Quantifying the degradation and dilution contribution to natural attenuation of contaminants by means of an open system Rayleigh equation

    No full text
    Quantifying the share of destructive and nondestructive processes to natural attenuation (NA) of groundwater pollution plumes is of high importance to the evaluation and acceptance of NA as remediation strategy. Dilution as consequence of hydrodynamic dispersion may contribute considerably to NA, however, without reducing the mass of pollution. Unfortunately, tracers to quantify dilution are usually lacking. Degradation though of low-molecular-weight organic chemicals such as BTEX, chlorinated ethenes, and MTBE is uniquely associated with increases in isotope ratios for steady-state plumes. Compound-specific isotope analysis (CSIA) data are commonly interpreted by means of the Rayleigh equation, originally developed for closed systems, to calculate the extent of degradation under open system field conditions. For that reason, the validity of this approach has been questioned. The Rayleigh equation was accordingly modified to account for dilution, and showed that dilution contributed several to many times more to NA than biodegradation at a groundwater benzene plume. Derived equations also (i) underlined that field-derived isotopic enrichment factors underestimate actual values operative as a consequence of dilution, and (ii) provided a check on the lower limit of isotopic fractionation, thereby resulting in more reliable predictions on the extent of degradation. © 2007 American Chemical Society

    Extending the Rayleigh equation to allow competing isotope fractionating pathways to improve quantification of biodegradation

    No full text
    The Rayleigh equation relates the change in isotope ratio of an element in a substrate to the extent of substrate consumption via a single kinetic isotopic fractionation factor (α). Substrate consumption is, however, commonly distributed over several metabolic pathways each potentially having a different α. Therefore, extended Rayleigh-type equations were derived to account for multiple competing degradation pathways. The value of a as expressed in the environment appears a function of the α values and rate constants of the various involved degradation pathways. Remarkably, the environmental or apparent α value changes and shows non-Rayleigh behavior over a large and relevant concentration interval if Monod kinetics applies and the half-saturation constants of the competing pathways differ. Derived equations were applied to previously published data and enabled (i) quantification of the share that two competing degradation pathways had on aerobic 1,2-dichloroethane (1,2-DCA) biodegradation in laboratory batch experiments and (ii) calculation of the extent of methyl tert-butyl ether (MTBE) biodegradation shared over aerobic and anaerobic degradation at a field site by means of an improved solution to two-dimensional (carbon and hydrogen) compound-specific isotope analysis (CSIA). © 2007 American Chemical Society

    Transverse hydrodynamic dispersion effects on isotope signals in groundwater chlorinated solvents’ plumes.

    No full text
    The effects of transverse hydrodynamic dispersion on altering transformation-induced compound-specific isotope analysis (CSIA) signals within groundwater pollution plumes have been assessed with reactive transport modeling accommodating diffusion-induced isotope fractionation (DIF) and implementing different parameterizations of local transverse dispersion. The model reproduced previously published field data showing a negative carbon isotope pattern (-2 %) at the fringes of a nondegrading PCE plume. We extended the study to reactive transport scenarios considering vinyl chloride as a model compound and assessing, through a detailed sensitivity analysis, the coupled effects of transverse hydrodynamic dispersion (with and without DIF) and aerobic fringe degradation on the evolution of carbon and chloride isotope ratios. Transformation-induced positive isotope signals were increasingly attenuated with distance from the source and higher degradation rate. The effect of DIF on the overall isotope signal attenuation was greatest near the source and for low values of groundwater flow velocity, transverse dispersion coefficient, molecular weight, rate constant, and isotope fractionation factor, α, of the degradation reaction. Models disregarding DIF underestimate the actual α. The approximately twice larger DIF effect for chlorine than for carbon together with the low α for oxidation resulted in strong chlorine CSIA depletions for VC at the plume fringe. © 2012 American Chemical Society

    Beyond the Rayleigh equation: reactive transport modeling of isotope fractionation effects to improve quantification of biodegradation

    No full text
    The Rayleigh equation is commonly applied to evaluate the extent of degradation at contaminated sites for which compound-specific isotope analysis (CSIA) data are available. However, it was shown recently that (i) the Rayleigh equation systematically underestimates the extent of biodegradation in physically heterogeneous systems, while (ii) it overestimates biodegradation if sorption-based carbon isotope fractionation is relevant. This paper further explores these two isotope effects not captured by the Rayleigh equation by means of a numerical modeling approach. The reactive multicomponent transport simulations show that the systematic underestimation is considerably larger for fringe-controlled and Monod-type degradation reactions than for previously assumed redox-insensitivefirst-orderdegradation kinetics, while forthe nonsteady state front portion of plumes, the Rayleigh equation may falsely indicate the occurrence of and/or overestimate biodegradation. The latter anomaly results from carbon isotope fractionation during sorption. It occurs for both supply-controlled degradation at the plume fringe and slow, reaction-controlled degradation inside the plume core. The numerical model approach enables a more accurate interpretation of CSIA data and thereby improves the quantification of biodegradation processes. © 2008 American Chemical Society

    Qualification of sequential chlorinated ethene degredation by use of a reactive transport model incorporating isotope fractionation.

    No full text
    Compound-specific isotope analysis (CSIA) enables quantification of biodegradation by use of the Rayleigh equation. The Rayleigh equation fails, however, to describe the sequential degradation of chlorinated aliphatic hydrocarbons (CAHs) involving various intermediates that are controlled by simultaneous degradation and production. This paper shows how isotope fractionation during sequential degradation can be simulated in a 10 reactive transport code (PHREEQC-2)

    Decomposing the Bulk Electrical Conductivity of Streamflow To Recover Individual Solute Concentrations at High Frequency

    No full text
    The ability to evaluate stream hydrochemistry is often constrained by the capacity to sample streamwater at an adequate frequency. While technology is no longer a limiting factor, costs and sample management can still be a barrier to high-resolution water quality instrumentation. We propose a new framework for investigating the electrical conductivity (EC) of streamwater, which can be measured continuously through inexpensive sensors. We show that EC embeds information about individual ion content that can be isolated to retrieve solute concentrations at high resolution. The essence of the approach is the decomposition of the EC signal into its "harmonics", i.e., the specific contributions of the major ions that conduct current in water. The ion contribution is used to explore water quality patterns and to develop algorithms that reconstruct solute concentrations starting from EC during periods where solute measurements are not available. The approach is validated on a hydrochemical data set from Plynlimon, Wales, showing that improved estimates of high-frequency solute dynamics can easily be achieved. Our results support the installation of EC probes to complement water quality campaigns and suggest that the potential of EC measurements in rivers is currently far from being fully exploited.Sanitary Engineerin

    Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production

    No full text
    Aquifers used for the production of drinking water are increasingly being used for the generation of shallow geothermal energy. This causes temperature perturbations far beyond the natural variations in aquifers and the effects of these temperature variations on groundwater quality, in particular trace elements, have not been investigated. Here, we report the results of column experiments to assess the impacts of temperature variations (5°C, 11°C, 25°C and 60°C) on groundwater quality in anoxic reactive unconsolidated sandy sediments derived from an aquifer system widely used for drinking water production in the Netherlands. Our results showed that at 5°C no effects on water quality were observed compared to the reference of 11°C (in situ temperature). At 25°C, As concentrations were significantly increased and at 60°C, significant increases were observed pH and DOC, P, K, Si, As, Mo, V, B, and F concentrations. These elements should therefore be considered for water quality monitoring programs of shallow geothermal energy projects. No consistent temperature effects were observed on Na, Ca, Mg, Sr, Fe, Mn, Al, Ba, Co, Cu, Ni, Pb, Zn, Eu, Ho, Sb, Sc, Yb, Ga, La, and Th concentrations, all of which were present in the sediment. The temperature-induced chemical effects were probably caused by (incongruent) dissolution of silicate minerals (K and Si), desorption from, and potentially reductive dissolution of, iron oxides (As, B, Mo, V, and possibly P and DOC), and mineralisation of sedimentary organic matter (DOC and P). © 2013 Elsevier Ltd
    • …
    corecore