3 research outputs found

    Genetic variants associated with longitudinal changes in brain structure across the lifespan

    Full text link
    Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging

    Intrinsic connectomes underlying response to trauma-focused psychotherapy in post-traumatic stress disorder

    Get PDF
    Although trauma-focused cognitive behavior therapy (TF-CBT) is the frontline treatment for post-traumatic stress disorder (PTSD), up to one-half of patients are treatment nonresponders. To understand treatment nonresponse, it is important to understand the neural mechanisms of TF-CBT. Here, we used whole-brain intrinsic functional connectivity analysis to identify neural connectomic signatures of treatment outcome. In total, 36 PTSD patients and 36 healthy individuals underwent functional MRI at pre-treatment baseline. Patients then underwent nine sessions of TF-CBT and completed clinical and follow-up MRIs. We used an established large-scale brain network atlas to parcellate the brain into 343 brain regions. Pairwise intrinsic task-free functional connectivity was calculated and used to identify pre-treatment connectomic features that were correlated with reduction of PTSD severity from pretreatment to post treatment. We formed a composite metric of intrinsic connections associated with therapeutic outcome, and then interrogated this composite metric to determine if it distinguished PTSD treatment responders and nonresponders from healthy control status and changed post treatment. Lower pre-treatment connectivity for the cingulo-opercular, salience, default mode, dorsal attention, and frontoparietal executive control brain networks was associated with treatment improvement. Treatment responders had lower while nonresponders had significantly greater connectivity than controls at pretreatment. With therapy, connectivity significantly increased for responders and decreased for nonresponders, while controls remain unchanged over this time period. We provide evidence that the intrinsic functional architecture of the brain, specifically connectivity within and between brain networks associated with external vigilance, self-awareness, and cognitive control, may characterize a positive response to TF-CBT for PTSD
    corecore