4,657 research outputs found
A quantum jump description for the non-Markovian dynamics of the spin-boson model
We derive a time-convolutionless master equation for the spin-boson model in
the weak coupling limit. The temporarily negative decay rates in the master
equation indicate short time memory effects in the dynamics which is explicitly
revealed when the dynamics is studied using the non-Markovian jump description.
The approach gives new insight into the memory effects influencing the spin
dynamics and demonstrates, how for the spin-boson model the the co-operative
action of different channels complicates the detection of memory effects in the
dynamics.Comment: 9 pages, 6 figures, submitted to Proceedings of CEWQO200
Reliability and reproducibility of Atlas information
We discuss the reliability and reproducibility of much of the information
contained in the Atlas of Finite Groups
Einselection without pointer states
We consider small subsystems of large, closed quantum systems that evolve
according to the von Neumann equation. Without approximations and without
making any special assumptions on the form of the interaction we prove that,
for almost all initial states and almost all times, the off-diagonal elements
of the density matrix of the subsystem in the eigenbasis of its local
Hamiltonian must be small, whenever the energy difference of the corresponding
eigenstates is larger than the interaction energy. This proves that decoherence
with respect to the local energy eigenbasis is a natural property of weakly
interacting quantum systems.Comment: published in Phys. Rev. E, 4 pages, no figures, revised introduction
and conclusions, references revised and new references added, editorial
change
Witness for initial system-environment correlations in open system dynamics
We study the evolution of a general open quantum system when the system and
its environment are initially correlated. We show that the trace distance
between two states of the open system can increase above its initial value, and
derive tight upper bounds for the growth of the distinguishability of open
system states. This represents a generalization of the contraction property of
quantum dynamical maps. The obtained inequalities can be interpreted in terms
of the exchange of information between the system and the environment, and lead
to a witness for system-environment correlations which can be determined
through measurements on the open system alone.Comment: 4 pages, 1 figur
Phenomenological memory-kernel master equations and time-dependent Markovian processes
Do phenomenological master equations with memory kernel always describe a
non-Markovian quantum dynamics characterized by reverse flow of information? Is
the integration over the past states of the system an unmistakable signature of
non-Markovianity? We show by a counterexample that this is not always the case.
We consider two commonly used phenomenological integro-differential master
equations describing the dynamics of a spin 1/2 in a thermal bath. By using a
recently introduced measure to quantify non-Markovianity [H.-P. Breuer, E.-M.
Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009)] we demonstrate that
as far as the equations retain their physical sense, the key feature of
non-Markovian behavior does not appear in the considered memory kernel master
equations. Namely, there is no reverse flow of information from the environment
to the open system. Therefore, the assumption that the integration over a
memory kernel always leads to a non-Markovian dynamics turns out to be
vulnerable to phenomenological approximations. Instead, the considered
phenomenological equations are able to describe time-dependent and
uni-directional information flow from the system to the reservoir associated to
time-dependent Markovian processes.Comment: 5 pages, no figure
Non-Markovian dissipative dynamics of two coupled qubits in independent reservoirs: a comparison between exact solutions and master equation approaches
The reduced dynamics of two interacting qubits coupled to two independent
bosonic baths is investigated. The one-excitation dynamics is derived and
compared with that based on the resolution of appropriate non-Markovian master
equations. The Nakajima-Zwanzig and the time-convolutionless projection
operator techniques are exploited to provide a description of the non-Markovian
features of the dynamics of the two-qubits system. The validity of such
approximate methods and their range of validity in correspondence to different
choices of the parameters describing the system are brought to light.Comment: 6 pages, 3 figures. Submitted to PR
The equilibrium states of open quantum systems in the strong coupling regime
In this work we investigate the late-time stationary states of open quantum
systems coupled to a thermal reservoir in the strong coupling regime. In
general such systems do not necessarily relax to a Boltzmann distribution if
the coupling to the thermal reservoir is non-vanishing or equivalently if the
relaxation timescales are finite. Using a variety of non-equilibrium formalisms
valid for non-Markovian processes, we show that starting from a product state
of the closed system = system + environment, with the environment in its
thermal state, the open system which results from coarse graining the
environment will evolve towards an equilibrium state at late-times. This state
can be expressed as the reduced state of the closed system thermal state at the
temperature of the environment. For a linear (harmonic) system and environment,
which is exactly solvable, we are able to show in a rigorous way that all
multi-time correlations of the open system evolve towards those of the closed
system thermal state. Multi-time correlations are especially relevant in the
non-Markovian regime, since they cannot be generated by the dynamics of the
single-time correlations. For more general systems, which cannot be exactly
solved, we are able to provide a general proof that all single-time
correlations of the open system evolve to those of the closed system thermal
state, to first order in the relaxation rates. For the special case of a
zero-temperature reservoir, we are able to explicitly construct the reduced
closed system thermal state in terms of the environmental correlations.Comment: 20 pages, 2 figure
Reduced density matrix hybrid approach: Application to electronic energy transfer
Electronic energy transfer in the condensed phase, such as that occurring in
photosynthetic complexes, frequently occurs in regimes where the energy scales
of the system and environment are similar. This situation provides a challenge
to theoretical investigation since most approaches are accurate only when a
certain energetic parameter is small compared to others in the problem. Here we
show that in these difficult regimes, the Ehrenfest approach provides a good
starting point for a dynamical description of the energy transfer process due
to its ability to accurately treat coupling to slow environmental modes. To
further improve on the accuracy of the Ehrenfest approach, we use our reduced
density matrix hybrid framework to treat the faster environmental modes quantum
mechanically, at the level of a perturbative master equation. This combined
approach is shown to provide an efficient and quantitative description of
electronic energy transfer in a model dimer and the Fenna-Matthews-Olson
complex and is used to investigate the effect of environmental preparation on
the resulting dynamics.Comment: 11 pages, 8 figure
Transition from diffusive to ballistic dynamics for a class of finite quantum models
The transport of excitation probabilities amongst weakly coupled subunits is
investigated for a class of finite quantum systems. It is demonstrated that the
dynamical behavior of the transported quantity depends on the considered length
scale, e. g., the introduced distinction between diffusive and ballistic
transport appears to be a scale-dependent concept, especially since a
transition from diffusive to ballistic behavior is found in the limit of small
as well as in the limit of large length scales. All these results are derived
by an application of the time-convolutionless projection operator technique and
are verified by the numerical solution of the full time-dependent Schroedinger
equation which is obtained by exact diagonalization for a range of model
parameters.Comment: 4 pages, 5 figures, approved for publication in Physical Review
Letter
Intersexual conflict influences female reproductive success in a female-dispersing primate
In group-living mammals, individual efforts to maximize reproductive success result in conflicts and compromises between the sexes. Females utilize counterstrategies to minimize the costs of sexual coercion by males, but few studies have examined the effect of such behaviors on female reproductive success. Secondary dispersal by females is rare among group-living mammals, but in western gorillas, it is believed to be a mate choice strategy to minimize infanticide risk and infant mortality. Previous research suggested that females choose males that are good protectors. However, how much female reproductive success varies depending on male competitive ability and whether female secondary dispersal leads to reproductive costs or benefits has not been examined. We used data on 100 females and 229 infants in 36 breeding groups from a 20-year long-term study of wild western lowland gorillas to investigate whether male tenure duration and female transfer rate had an effect on interbirth interval, female birth rates, and offspring mortality. We found that offspring mortality was higher near the end of males’ tenures, even after excluding potential infanticide when those males died, suggesting that females suffer a reproductive cost by being with males nearing the end of their tenures. Females experience a delay in breeding when they dispersed, having a notable effect on birth rates of surviving offspring per female if females transfer multiple times in their lives. This study exemplifies that female counterstrategies to mitigate the effects of male-male competition and sexual coercion may not be sufficient to overcome the negative consequences of male behavior
- …