6,750 research outputs found

    A quantum jump description for the non-Markovian dynamics of the spin-boson model

    Full text link
    We derive a time-convolutionless master equation for the spin-boson model in the weak coupling limit. The temporarily negative decay rates in the master equation indicate short time memory effects in the dynamics which is explicitly revealed when the dynamics is studied using the non-Markovian jump description. The approach gives new insight into the memory effects influencing the spin dynamics and demonstrates, how for the spin-boson model the the co-operative action of different channels complicates the detection of memory effects in the dynamics.Comment: 9 pages, 6 figures, submitted to Proceedings of CEWQO200

    Stochastic analysis and simulation of spin star systems

    Full text link
    We discuss two methods of an exact stochastic representation of the non-Markovian quantum dynamics of open systems. The first method employs a pair of stochastic product vectors in the total system's state space, while the second method uses a pair of state vectors in the open system's state space and a random operator acting on the state space of the environment. Both techniques lead to an exact solution of the von Neumann equation for the density matrix of the total system. Employing a spin star model describing a central spin coupled to bath of surrounding spins, we perform Monte Carlo simulations for both variants of the stochastic dynamics. In addition, we derive analytical expression for the expectation values of the stochastic dynamics to obtain the exact solution for the density matrix of the central spin.Comment: 8 pages, 2 figure

    Sudden violation of the CHSH inequality in a two qubits system

    Full text link
    I study the dynamics of the violation of the CHSH inequality for two qubits interacting with a common zero-temperature non-Markovian environment. I demonstrate sudden violation of the inequality for two qubits initially prepared in a factorized state. Due to the strong coupling between the qubits and the reservoir, the dynamics is characterized by numerous sharp revivals. Furthermore I focus on a more realistic physical system in which the spontaneous emission for the qubits is taken into account. When including spontaneous emission even for small decay parameters, revivals in the violation are heavily damped out. If the decay rates exceed a certain threshold, the inequality turns out to be always satisfied.Comment: Accepted by Physica Scripta as part of the Proceedings of CEWQO0

    New method to simulate quantum interference using deterministic processes and application to event-based simulation of quantum computation

    Full text link
    We demonstrate that networks of locally connected processing units with a primitive learning capability exhibit behavior that is usually only attributed to quantum systems. We describe networks that simulate single-photon beam-splitter and Mach-Zehnder interferometer experiments on a causal, event-by-event basis and demonstrate that the simulation results are in excellent agreement with quantum theory. We also show that this approach can be generalized to simulate universal quantum computers.Comment: J. Phys. Soc. Jpn. (in press) http://www.compphys.net/dl

    Witness for initial system-environment correlations in open system dynamics

    Full text link
    We study the evolution of a general open quantum system when the system and its environment are initially correlated. We show that the trace distance between two states of the open system can increase above its initial value, and derive tight upper bounds for the growth of the distinguishability of open system states. This represents a generalization of the contraction property of quantum dynamical maps. The obtained inequalities can be interpreted in terms of the exchange of information between the system and the environment, and lead to a witness for system-environment correlations which can be determined through measurements on the open system alone.Comment: 4 pages, 1 figur

    Initial state preparation with dynamically generated system-environment correlations

    Full text link
    The dependence of the dynamics of open quantum systems upon initial correlations between the system and environment is an utterly important yet poorly understood subject. For technical convenience most prior studies assume factorizable initial states where the system and its environments are uncorrelated, but these conditions are not very realistic and give rise to peculiar behaviors. One distinct feature is the rapid build up or a sudden jolt of physical quantities immediately after the system is brought in contact with its environments. The ultimate cause of this is an initial imbalance between system-environment correlations and coupling. In this note we demonstrate explicitly how to avoid these unphysical behaviors by proper adjustments of correlations and/or the coupling, for setups of both theoretical and experimental interest. We provide simple analytical results in terms of quantities that appear in linear (as opposed to affine) master equations derived for factorized initial states.Comment: 6 pages, 2 figure

    Empirical Patterns in Google Scholar Citation Counts

    Full text link
    Scholarly impact may be metricized using an author's total number of citations as a stand-in for real worth, but this measure varies in applicability between disciplines. The detail of the number of citations per publication is nowadays mapped in much more detail on the Web, exposing certain empirical patterns. This paper explores those patterns, using the citation data from Google Scholar for a number of authors.Comment: 6 pages, 8 figures, submitted to Cyberpatterns 201

    Measure for the Degree of Non-Markovian Behavior of Quantum Processes in Open Systems

    Full text link
    We construct a general measure for the degree of non-Markovian behavior in open quantum systems. This measure is based on the trace distance which quantifies the distinguishability of quantum states. It represents a functional of the dynamical map describing the time evolution of physical states, and can be interpreted in terms of the information flow between the open system and its environment. The measure takes on nonzero values whenever there is a flow of information from the environment back to the open system, which is the key feature of non-Markovian dynamics.Comment: 4 pages, 2 figures, published versio
    • …
    corecore