1,495 research outputs found
Avalanche statistics of sand heaps
Large scale computer simulations are presented to investigate the avalanche
statistics of sand piles using molecular dynamics. We could show that different
methods of measurement lead to contradicting conclusions, presumably due to
avalanches not reaching the end of the experimental table.Comment: 6 pages, 4 figure
Breakdown of self-organized criticality
We introduce two sandpile models which show the same behavior of real
sandpiles, that is, an almost self-organized critical behavior for small
systems and the dominance of large avalanches as the system size increases. The
systems become fully self-organized critical, with the critical exponents of
the Bak, Tang and Wiesenfeld model, as the system parameters are changed,
showing that these systems can make a bridge between the well known theoretical
and numerical results and what is observed in real experiments. We find that a
simple mechanism determines the boundary where self-organized can or cannot
exist, which is the presence of local chaos.Comment: 3 pages, 4 figure
A Development Environment for Visual Physics Analysis
The Visual Physics Analysis (VISPA) project integrates different aspects of
physics analyses into a graphical development environment. It addresses the
typical development cycle of (re-)designing, executing and verifying an
analysis. The project provides an extendable plug-in mechanism and includes
plug-ins for designing the analysis flow, for running the analysis on batch
systems, and for browsing the data content. The corresponding plug-ins are
based on an object-oriented toolkit for modular data analysis. We introduce the
main concepts of the project, describe the technical realization and
demonstrate the functionality in example applications
Self-Structuring of Granular Media under Internal Avalanches
We study the phenomenon of internal avalanching within the context of
recently proposed ``Tetris'' lattice models for granular media. We define a
recycling dynamics under which the system reaches a steady state which is
self-structured, i.e. it shows a complex interplay between textured internal
structures and critical avalanche behavior. Furthermore we develop a general
mean-field theory for this class of systems and discuss possible scenarios for
the breakdown of universality.Comment: 4 pages RevTex, 3 eps figures, revised version to appear in Phys.
Rev. Let
Avalanche Dynamics in Wet Granular Materials
We have studied the dynamics of avalanching wet granular media in a rotating
drum apparatus. Quantitative measurements of the flow velocity and the granular
flux during avalanches allow us to characterize novel avalanche types unique to
wet media. We also explore the details of viscoplastic flow (observed at the
highest liquid contents) in which there are lasting contacts during flow,
leading to coherence across the entire sample. This coherence leads to a
velocity independent flow depth at high rotation rates and novel robust pattern
formation in the granular surface.Comment: 5 pages, 3 figures in color, REVTeX4, for smaller pdfs see
http://angel.elte.hu/~tegzes/condmat.htm
Macroscopic Car Condensation in a Parking Garage
An asymmetric exclusion process type process, where cars move forward along a
closed road that starts and terminates at a parking garage, displays dynamic
phase transitions into two types of condensate phases where the garage becomes
macroscopically occupied. The total car density and the exit
probability are the two control parameters. At the transition, the
number of parked cars diverges in both cases, with the length of the road
, as with . Towards the transition, the
number of parked cars vanishes as with ,
or being the
distance from the transition. The transition into the normal phase represents
also the onset of transmission of information through the garage. This gives
rise to unusual parked car autocorrelations and car density profiles near the
garage, which depend strongly on the group velocity of the fluctuations along
the road.Comment: 12 pages including 15 figures; published version in PR
Evidence for Kosterlitz-Thouless type orientational ordering of CFBr monolayers physisorbed on graphite
Monolayers of the halomethane CFBr adsorbed on graphite have been
investigated by x-ray diffraction. The layers crystallize in a commensurate
triangular lattice. On cooling they approach a three-sublattice
antiferroelectric pattern of the in-plane components of the dipole moments. The
ordering is not consistent with a conventional phase transition, but points to
Kosterlitz-Thouless behavior. It is argued that the transition is described by
a 6-state clock model on a triangular lattice with antiferromagnetic nearest
neighbor interactions which is studied with Monte-Carlo simulations. A
finite-size scaling analysis shows that the ordering transition is indeed in
the KT universality class.Comment: 4 pages, 5 figure
A novel camera type for very high energy gamma-ray astronomy based on Geiger-mode avalanche photodiodes
Geiger-mode avalanche photodiodes (G-APD) are promising new sensors for light
detection in atmospheric Cherenkov telescopes. In this paper, the design and
commissioning of a 36-pixel G-APD prototype camera is presented. The data
acquisition is based on the Domino Ring Sampling (DRS2) chip. A sub-nanosecond
time resolution has been achieved. Cosmic-ray induced air showers have been
recorded using an imaging mirror setup, in a self-triggered mode. This is the
first time that such measurements have been carried out with a complete G-APD
camera.Comment: 9 pages with 11 figure
Mean Field Theory of Sandpile Avalanches: from the Intermittent to the Continuous Flow Regime
We model the dynamics of avalanches in granular assemblies in partly filled
rotating cylinders using a mean-field approach. We show that, upon varying the
cylinder angular velocity , the system undergoes a hysteresis cycle
between an intermittent and a continuous flow regimes. In the intermittent flow
regime, and approaching the transition, the avalanche duration exhibits
critical slowing down with a temporal power-law divergence. Upon adding a white
noise term, and close to the transition, the distribution of avalanche
durations is also a power-law. The hysteresis, as well as the statistics of
avalanche durations, are in good qualitative agreement with recent experiments
in partly filled rotating cylinders.Comment: 4 pages, RevTeX 3.0, postscript figures 1, 3 and 4 appended
Toward a Social Practice Theory of Relational Competing
This paper brings together the competitive dynamics and strategy-aspractice literatures to investigate relational competition. Drawing on a global ethnography of the reinsurance market, we develop the concept of micro-competitions, which are the focus of competitors’ everyday competitive practices. We find variation in relational or rivalrous competition by individual competitors across the phases of a micro-competition, between competitors within a micro-competition, and across multiple micro-competitions. These variations arise from the interplay between the unfolding competitive arena and the implementation of each firm’s strategic portfolio. We develop a conceptual framework that makes four contributions to: relational competition; reconceptualizing action and response; elaborating on the awareness-motivation-capability framework within competitive dynamics; and the recursive dynamic by which implementing strategy inside firms shapes, and is shaped by, the competitive arena
- …