5 research outputs found

    Complete genome sequence of the ethanol producer Zymomonas mobilis NCIMB 11163

    No full text
    Zymomonas mobilis is an ethanol-producing alphaproteobacterium currently considered a major candidate organism for bioethanol production. Here we report the finished and annotated genome sequence of Z. mobilis subsp. mobilis strain NCIMB 11163, a British ale-infecting isolate. This is the first Z. mobilis strain whose genome, chromosomal and plasmid, is presented in its entirety. Copyright © 2009, American Society for Microbiology. All Rights Reserved

    Genome Sequence of the ethanol-producing Zymomonas mobilis subsp. Mobilis lectotype strain ATCC 10988

    No full text
    Zymomonas mobilis ATCC 10988 is the type strain of the Z. mobilis subsp. mobilis taxon, members of which are some of the most rigorous ethanol-producing bacteria. Isolated from Agave cactus fermentations in Mexico, ATCC 10988 is one of the first Z. mobilis strains to be described and studied. Its robustness in sucrosesubstrate fermentations, physiological characteristics, large number of plasmids, and overall genomic plasticity render this strain important to the study of the species. Here we report the finishing and annotation of the ATCC 10988 chromosomal and plasmid genome. © 2011, American Society for Microbiology

    Genome Sequence of the ethanol-producing Zymomonas mobilis subsp. Pomaceae lectotype strain ATCC 29192

    No full text
    Zymomonas mobilis is an alphaproteobacterium studied for bioethanol production. Different strains of this organism have been hitherto sequenced; they all belong to the Z. mobilis subsp. mobilis taxon. Here we report the finished and annotated genome sequence of strain ATCC 29192, a cider-spoiling agent isolated in the United Kingdom. ATCC 29192 is the lectotype of the second-best-characterized subspecies of Z. mobilis, Z. mobilis subsp. pomaceae. The nucleotide sequence of ATCC 29192 deviates from that of Z. mobilis subsp. mobilis representatives, which justifies its distinct taxonomic positioning and proves particularly useful for comparative and functional genomic analyses. © 2011, American Society for Microbiology
    corecore