133 research outputs found
Genomics of an extreme psychrophile, Psychromonas ingrahamii
© 2008 Riley et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The definitive version was published in BMC Genomics 9 (2008): 210, doi:10.1186/1471-2164-9-210.The genome sequence of the sea-ice bacterium Psychromonas ingrahamii 37, which grows exponentially at -12C, may reveal features that help to explain how this extreme psychrophile is able to grow at such low temperatures. Determination of the whole genome sequence allows comparison with genes of other psychrophiles and mesophiles.
Correspondence analysis of the composition of all P. ingrahamii proteins showed that (1) there are 6 classes of proteins, at least one more than other bacteria, (2) integral inner membrane proteins are not sharply separated from bulk proteins suggesting that, overall, they may have a lower hydrophobic character, and (3) there is strong opposition between asparagine and the oxygen-sensitive amino acids methionine, arginine, cysteine and histidine and (4) one of the previously unseen clusters of proteins has a high proportion of "orphan" hypothetical proteins, raising the possibility these are cold-specific proteins.
Based on annotation of proteins by sequence similarity, (1) P. ingrahamii has a large number (61) of regulators of cyclic GDP, suggesting that this bacterium produces an extracellular polysaccharide that may help sequester water or lower the freezing point in the vicinity of the cell. (2) P. ingrahamii has genes for production of the osmolyte, betaine choline, which may balance the osmotic pressure as sea ice freezes. (3) P. ingrahamii has a large number (11) of three-subunit TRAP systems that may play an important role in the transport of nutrients into the cell at low temperatures. (4) Chaperones and stress proteins may play a critical role in transforming nascent polypeptides into 3-dimensional configurations that permit low temperature growth. (5) Metabolic properties of P. ingrahamii were deduced. Finally, a few small sets of proteins of unknown function which may play a role in psychrophily have been singled out as worthy of future study.
The results of this genomic analysis provide a springboard for further investigations into mechanisms of psychrophily. Focus on the role of asparagine excess in proteins, targeted phenotypic characterizations and gene expression investigations are needed to ascertain if and how the organism regulates various proteins in response to growth at lower temperatures.MR acknowledges
support from DE-FG02-04ER63940. JTS acknowledges the support from
the University of Washington NASA NAI program and the NSF Astrobiology
IGERT program. TZW acknowledges support from a grant from the
Fondation Fourmentin-Guilbert and AD acknowledges support from the
European Union BioSapiens Network of Excellence, Grant LSHG CT-2003-50326
Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1
Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed
IMPECCABLE: Integrated Modeling PipelinE for COVID Cure by Assessing Better LEads
The drug discovery process currently employed in the pharmaceutical industry typically requires about 10 years and $2–3 billion to deliver one new drug. This is both too expensive and too slow, especially in emergencies like the COVID-19 pandemic. In silico methodologies need to be improved both to select better lead compounds, so as to improve the efficiency of later stages in the drug discovery protocol, and to identify those lead compounds more quickly. No known methodological approach can deliver this combination of higher quality and speed. Here, we describe an Integrated Modeling PipEline for COVID Cure by Assessing Better LEads (IMPECCABLE) that employs multiple methodological innovations to overcome this fundamental limitation. We also describe the computational framework that we have developed to support these innovations at scale, and characterize the performance of this framework in terms of throughput, peak performance, and scientific results. We show that individual workflow components deliver 100 × to 1000 × improvement over traditional methods, and that the integration of methods, supported by scalable infrastructure, speeds up drug discovery by orders of magnitudes. IMPECCABLE has screened ∼ 1011 ligands and has been used to discover a promising drug candidate. These capabilities have been used by the US DOE National Virtual Biotechnology Laboratory and the EU Centre of Excellence in Computational Biomedicine
Pandemic Drugs at Pandemic Speed: Infrastructure for Accelerating COVID-19 Drug Discovery with Hybrid Machine Learning- and Physics-based Simulations on High Performance Computers
The race to meet the challenges of the global pandemic has served as a reminder that the existing drug discovery process is expensive, inefficient and slow. There is a major bottleneck screening the vast number of potential small molecules to shortlist lead compounds for antiviral drug development. New opportunities to accelerate drug discovery lie at the interface between machine learning methods, in this case, developed for linear accelerators, and physics-based methods. The two in silico methods, each have their own advantages and limitations which, interestingly, complement each other. Here, we present an innovative infrastructural development that combines both approaches to accelerate drug discovery. The scale of the potential resulting workflow is such that it is dependent on supercomputing to achieve extremely high throughput. We have demonstrated the viability of this workflow for the study of inhibitors for four COVID-19 target proteins and our ability to perform the required large-scale calculations to identify lead antiviral compounds through repurposing on a variety of supercomputers
Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer
Background Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion We describe an Australian origin for B. pseudomallei, characterized by a single introduction event into Southeast Asia during a recent glacial period, and variable levels of lateral gene transfer within populations. These patterns provide insights into mechanisms of genetic diversification in B. pseudomallei and its closest relatives, and provide a framework for integrating the traditionally separate fields of population genetics and phylogenetics for other bacterial species with high levels of lateral gene transfer
Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks
Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at its optimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to resistance; and strengthen the case for a role in survival of systems involved in manganese and iron homeostasis
- …