6 research outputs found

    Linking the phyllosphere microbiome to plant health

    No full text
    The phyllosphere harbors diverse microbial communities that influence ecosystem functioning. Emerging evidence suggests that plants impaired in genetic networks harbor an altered microbiome and develop dysbiosis in the phyllosphere, which pinpoints plant genetics as a key driver of the phyllosphere microbiome assembly and links the phyllosphere microbiome to plant health

    Occurrence of honey bee-associated pathogens in Varroa-free pollinator communities

    Get PDF
    Australia remains the last significant land mass free of Varroa, a parasitic mite which has caused dramatic honey bee (Apis mellifera) colony losses across the globe, due to its association with the pathogenic deformed wing virus (DWV). As such, Australia continues to maintain relatively healthy honey bee populations, despite recent work showing apiaries harbor a surprisingly high prevalence of microbial pathogens. We sought to determine the prevalence of these microbial pathogens in honey bees and native pollinators actively co-foraging on mass flowering crops and to understand the extent to which they may be shared between taxa. We found high pre-valences of black queen cell virus (BQCV) and sacbrood virus (SBV) in the honey bees (88% and 41% respectively), and correspondingly, these were the most common honey bee pathogens detected in native pollinator taxa, albeit at much lower prevalence; the maximum prevalence for any pathogen in a native pollinator group was 24% (BQCV in Halictidae spp.). The viral pathogens Israeli acute paralysis virus and Lake Sinai viruses 1 and 2, and the fungal parasites Nosema apis and Nosema ceranae, were only rarely detected. Phylogenetic analyses of the most common pathogens revealed similar genotypes circulating between species. Our data suggest that, in Australian orchards, pathogen prevalence in honey bees is a good predictor of pathogen prevalence in native pollinators, which raises concerns about how the viral landscape may change in native taxa if, or when, Varroa arrives

    Microbiome-mediated stress resistance in plants

    No full text
    Plants are subjected to diverse biotic and abiotic stresses in life. These can induce changes in transcriptomics and metabolomics, resulting in changes to root and leaf exudates and, in turn, altering the plant-associated microbial community. Emerging evidence demonstrates that changes, especially the increased abundance of commensal microbes following stresses, can be beneficial for plant survival and act as a legacy, enhancing offspring fitness. However, outstanding questions remain regarding the microbial role in plant defense, many of which may now be answered utilizing a novel synthetic community approach. In this article, building on our current understanding on stress-induced changes in plant microbiomes, we propose a ‘DefenseBiome’ concept that informs the design and construction of beneficial microbial synthetic communities for improving fundamental understanding of plant–microbial interactions and the development of plant probiotics

    Global honey bee viral landscape altered by a parasitic mite

    No full text
    Emerging diseases are among the greatest threats to honey bees. Unfortunately, where and when an emerging disease will appear are almost impossible to predict. The arrival of the parasitic Varroa mite into the Hawaiian honey bee population allowed us to investigate changes in the prevalence, load, and strain diversity of honey bee viruses. The mite increased the prevalence of a single viral species, deformed wing virus (DWV), from ∼10 to 100% within honey bee populations, which was accompanied by a millionfold increase in viral titer and a massive reduction in DWV diversity, leading to the predominance of a single DWV strain. Therefore, the global spread of Varroa has selected DWV variants that have emerged to allow it to become one of the most widely distributed and contagious insect viruses on the planet

    Tephritid fruit flies have a large diversity of co-occurring RNA viruses

    No full text
    Tephritid fruit flies are amongst the most devastating pests of horticulture, and Sterile Insect Technique (SIT) programs have been developed for their control. Their interactions with viruses are still mostly unexplored, yet, viruses may negatively affect tephritid health and performance in SIT programs, and, conversely, constitute potential biological control agents. Here we analysed ten transcriptome libraries obtained from laboratory populations of nine tephritid species from Australia (six species of Bactrocera, and Zeugodacus cucumis), Asia (Bactrocera dorsalis) and Europe (Ceratitis capitata). We detected new viral diversity, including near-complete (>99%) and partially complete (>80%) genomes of 34 putative viruses belonging to eight RNA virus families. On average, transcriptome libraries included 3.7 viruses, ranging from 0 (Z. cucumis) to 9 (B. dorsalis). Most viruses belonged to the Picornavirales, represented by fourteen Dicistroviridae (DV), nine Iflaviridae (IV) and two picorna-like viruses. Others were a virus from Rhabdoviridae (RV), one from Xinmoviridae (both Mononegavirales), several unclassified Negev- and toti-like viruses, and one from Metaviridae (Ortervirales). Using diagnostic PCR primers for four viruses found in the transcriptome of the Bactrocera tryoni strain bent wings (BtDV1, BtDV2, BtIV1, and BtRV1), we tested nine Australian laboratory populations of five species (B. tryoni, Bactrocera neohumeralis, Bactrocera jarvisi, Bactrocera cacuminata, C. capitata), and one field population each of B. tryoni, B. cacuminata and Dirioxa pornia. Viruses were present in most laboratory and field populations yet their incidence differed for each virus. Prevalence and co-occurrence of viruses in B. tryoni and B. cacuminata were higher in laboratory than field populations. This raises concerns about the potential accumulation of viruses and their potential health effects in laboratory and mass-rearing environments which might affect flies used in research and control programs such as SIT

    Temporal changes in the microbiome of stingless bee foragers following colony relocation

    No full text
    Maintaining beneficial interactions with microbial symbionts is vital for animal health. Yet, for social insects, the stability of microbial associations within and between cohorts is largely unknown. We investigated temporal changes in the microbiomes of nine stingless bee (Tetragonula carbonaria) colonies at seven timepoints across a ten-month period when moved between two climatically and florally different sites. Bacterial 16S rRNA gene and fungal ITS amplicon sequencing confirmed that while microbiomes varied between colonies initially, all were diverse at site one. However, following relocation, considerable changes occurred in bacterial community composition within each colony, and the microbiome composition became more similar across colonies. Notably, Snodgrassella disappeared and Zymobacter appeared as relatively abundant taxa. Remarkably, bacterial communities within colonies continued to shift over time but remained similar across colonies, becoming dominated by Acinetobacter six months after returning to the original site. Our results indicate that the stingless bee microbiome can undergo major changes in response to the environment, and that these changes can be long-lasting. Such legacy effects have not been reported for corbiculate bees. Further understanding the microbial ecology of stingless bees will aid future management of colonies used in agricultural production
    corecore