59 research outputs found

    The Invention of the Transistor

    Get PDF
    Julius E. Lilienfeld filed for patents for three different designs for solid-state amplifying devices between 1926 and 1928, well before Bell Lab\u27s discovery of the point-contact transistor in 1948. The American Physical Society named a prize in honor of Lilienfeld after receiving a substantial sum of money in 1982 from the will of his wife, Beatrice Lilienfeld, who believed her husband had not received sufficient credit for his scientific contributions. In order to investigate Lilienfeld\u27s contribution to early efforts to replace the vacuum triode, we present the history surrounding these efforts, contributions and limitations of Lilienfeld\u27s work, and details of our own experiments to recreate one of Lilienfeld\u27s patents. Experimental results suggest that it is likely Lilienfeld indeed built and tested his devices, doing more than simply patenting an idea

    Effect of Hydro-Resistance Training on Bat Velocity

    Full text link
    The purpose of this study was to determine the effect of hydro-resistance training on bat velocity during mimicked baseball swings in twenty-five female college students. Subjects were pre-tested for bat velocity and assigned to dry land (n = 8), water (n = 8), and control (n = 9) groups. The dry land group swung a 737 g (26 oz) Easton T1 Thunderstick baseball bat for three sets of 15 swings, three days per week, for eight weeks. The water group performed the swings in shoulder deep water. The dry land and water groups also participated in mandatory team general resistance training three days per week. The control group performed no bat swing or resistance-training regimens. Mean bat velocity was measured with an electronic eye-timing device. A 3 x 2 (Group x Time) ANOVA with repeated measures was used for statistical analysis, followed up with Tukey’s post hoc test. Bat velocity decreased significantly for the dry land and water groups (24.0 ± 3.6 m/s to 20.6 ± 4.1 m/s and 23.8 ± 3.5 to 18.8 ± 4.1 m/s, respectively). Bat velocity did not change for the control group (21.5 ± 3.0 m/s to 20.2 ± 2.1 m/s). We speculate that the decreased bat velocity in the dry land and water groups was caused by the mandatory team general resistance-training program

    Djinn Lite: a tool for customised gene transcript modelling, annotation-data enrichment and exploration

    Get PDF
    BACKGROUND: There is an ever increasing rate of data made available on genetic variation, transcriptomes and proteomes. Similarly, a growing variety of bioinformatic programs are becoming available from many diverse sources, designed to identify a myriad of sequence patterns considered to have potential biological importance within inter-genic regions, genes, transcripts, and proteins. However, biologists require easy to use, uncomplicated tools to integrate this information, visualise and print gene annotations. Integrating this information usually requires considerable informatics skills, and comprehensive knowledge of the data format to make full use of this information. Tools are needed to explore gene model variants by allowing users the ability to create alternative transcript models using novel combinations of exons not necessarily represented in current database deposits of mRNA/cDNA sequences. RESULTS: Djinn Lite is designed to be an intuitive program for storing and visually exploring of custom annotations relating to a eukaryotic gene sequence and its modelled gene products. In particular, it is helpful in developing hypothesis regarding alternate splicing of transcripts by allowing the construction of model transcripts and inspection of their resulting translations. It facilitates the ability to view a gene and its gene products in one synchronised graphical view, allowing one to drill down into sequence related data. Colour highlighting of selected sequences and added annotations further supports exploration, visualisation of sequence regions and motifs known or predicted to be biologically significant. CONCLUSION: Gene annotating remains an ongoing and challengingtask that will continue as gene structures, gene transcription repertoires, disease loci, protein products and their interactions become moreprecisely defined. Djinn Lite offers an accessible interface to help accumulate, enrich, and individualise sequence annotations relating to a gene, its transcripts and translations. The mechanism of transcript definition and creation, and subsequent navigation and exploration of features, are very intuitive and demand only a short learning curve. Ultimately, Djinn Lite can form the basis for providing valuable clues to plan new experiments, providing storage of sequences and annotations for dedication to customised projects. The application is appropriate for Windows 98-ME-2000-XP-2003 operating systems

    Parity Violation in Neutron Resonances of Palladium

    Full text link
    Parity violation in p-wave neutron resonances of the palladium isotopes 104, 105, 106, and 108 has been measured by transmission of a longitudinally polarized neutron beam through a natural palladium target. The measurements were performed at the pulsed spallation neutron source of Los Alamos Neutron Science Center. The rms weak interaction matrix elements and the corresponding spreading widths were determined for 104 Pd, 105 Pd, and 106 P

    Neutron Resonance Spectroscopy of 103Rh from 30 eV to 2 keV

    Full text link
    Neutron resonances in 103Rh have been measured for neutron energies from 30 to 2000 eV using the time-of-flight method and the (n,γ) reaction. The rhodium resonance spectroscopy is essential for the analysis of parity violation measurements recently performed on neutron resonances in 103Rh. Neutron scattering and radiative widths were determined, and orbital angular momentum assignments made with a Bayesian analysis. The s-wave and p-wave strength functions and average level spacings were determined

    Parity Violation in Neutron Resonances of 103Rh

    Full text link
    Parity nonconservation (PNC) was studied in p-wave neutron resonances of 103Rh in the neutron energy range 30 to 490 eV. The helicity dependence of the neutron total cross section of rhodium was determined by capture measurements with the time-of-flight method at the Manuel Lujan Neutron Scattering Center at the Los Alamos National Laboratory. A total of 32 p-wave resonances were studied and statistically significant longitudinal asymmetries were observed for resonances at En=44.5, 110.8, 321.6, and 432.9 eV. A statistical analysis treating the PNC matrix elements as random variables yields a weak spreading widthΓw=(1.42-0.59+1.21)×10-7eV

    Neutron Resonance Spectroscopy of 106Pd, and 108Pd from 20–2000 eV

    Full text link
    Parity nonconserving asymmetries have been measured in p-wave resonances of 106Pd and 108Pd. The data analysis requires knowledge of the neutron resonance parameters. Transmission and capture γ-ray yields were measured for En=20–2000 eV with the time-of-flight method at the Los Alamos Neutron Science Center (LANSCE). A total of 28 resonances in 106Pd and 32 resonances in 108Pd were studied. The resonance parameters for 106Pd are new for all except one resonance. In 108Pd six new resonances were observed and the precision improved for many of the resonance parameters. A Bayesian analysis was used to assign orbital angular momentum for the resonances studied

    Parity Nonconservation in 106Pd and 108Pd Neutron Resonances

    Full text link
    Parity nonconservation (PNC) has been studied in the neutron p-wave resonances of 106Pd and 108Pd in the energy range of 20 to 2000 eV. Longitudinal asymmetries in p-wave capture cross sections are measured using longitudinally polarized neutrons incident on ∼20-g metal-powder targets at LANSCE. A CsI γ-ray detector array measures capture cross section asymmetries as a function of neutron energy which is determined by the neutron time-of-flight method. A total of 21 p-wave resonances in 106Pd and 21 p-wave resonances in 108Pd were studied. One statistically significant PNC effect was observed in106Pd, and no effects were observed in 108Pd. For 106Pd a weak spreading width of Γw=34-28+47×10-7 eV was obtained. For 108Pd an upper limit on the weak spreading width of Γw\u3c12×10-7 eV was determined at the 68% confidence level

    Parity Violation in Neutron Resonances in 107,109Ag

    Full text link
    Parity nonconservation (PNC) was studied in p-wave resonances in Ag by measuring the helicity dependence of the neutron total cross section. Transmission measurements on natural Ag were performed in the energy range 32 to 422 eV with the time-of-flight method at the Manuel Lujan Neutron Scattering Center at Los Alamos National Laboratory. A total of 15 p-wave neutron resonances were studied in 107Ag and ninep-wave resonances in 109Ag. Statistically significant asymmetries were observed for eight resonances in 107Ag and for four resonances in109Ag. An analysis treating the PNC matrix elements as random variables yields a weak spreading width of Γw=(2.67-1.21+2.65)×10-7 eV for107Ag and Γw=(1.30-0.74+2.49)×10-7 eV for 109Ag
    • …
    corecore