2 research outputs found

    A critical review of filter transmittance measurements for aerosol light absorption, and <i>de novo</i> calibration for a decade of monitoring on PTFE membranes

    No full text
    <p>The IMPROVE (Interagency Monitoring of PROtected Visual Environments) network monitors the attenuation of light by PM<sub>2.5</sub> samples (fine particulate matter, D<sub>aero</sub> = 2.5 μm) routinely collected on polytetrafluoroethylene (PTFE) filters throughout the United States. The results of this measurement have long been reported as an indicator of absorption, with no rigorous calibration as such. Filter-based absorption measurements more conventionally employ optically thick quartz- or glass-fiber collection media, for which a substantial calibration literature offers algorithms to correct for particle scattering and filter loading effects. PTFE membranes are optically thinner and less homogeneous than the fiber media, but they avoid interference from adsorbed organic gases that is associated with quartz and glass fiber media. IMPROVE's measurement system is a hybrid of integrating sphere and integrating plate that records the light backscattered as well as transmitted by each filter. This article introduces and validates a theory-based model for calibration and data reduction that accounts for particle scattering effects as well as variations in filter optics. Tests based on historical analyses of field blanks and recent reanalyses of archived samples establish that the current system has operated with a stable calibration since 2003.</p> <p>The newly calibrated IMPROVE absorption values correlate strongly with the refractory carbon fraction reported by thermal-optical analysis as “elemental” (EC). EC is sometimes treated as the only significant light absorber in PM<sub>2.5</sub>, but the general decline observed between 2005 and 2014 in IMPROVE EC was not accompanied by a comparable decline in IMPROVE absorption. Absorption also exhibits a distinct association with Fe concentrations, which at IMPROVE sites are attributable mainly to mineral dusts and have generally held steady or risen since 2003. An increased relative contribution by mineral dusts can explain some, but not all, of the observed difference between recent absorption and EC trends.</p

    Origin of Fine Particulate Carbon in the Rural United States

    No full text
    Carbonaceous compounds are a significant component of fine particulate matter and haze in national parks and wilderness areas where visibility is protected, i.e., class I areas (CIAs). The Regional Haze Rule set the goal of returning visibility in CIAs on the most anthropogenically impaired days to natural by 2064. To achieve this goal, we need to understand contributions of natural and anthropogenic sources to the total fine particulate carbon (TC). A Lagrangian chemical transport model was used to simulate the 2006–2008 contributions from various source types to measured TC in CIAs and other rural lands. These initial results were incorporated into a hybrid model to reduce systematic biases. During summer months, fires and vegetation-derived secondary organic carbon together often accounted for >75% of TC. Smaller contributions, <20%, from area and mobile sources also occurred. During the winter, contributions from area and mobile sources increased, with area sources accounting for half or more of the TC in many regions. The area emissions were likely primarily from residential and industrial wood combustion. Different fire seasons were evident, with the largest contributions during the summer when wildfires occur and smaller contributions during the spring and fall when prescribed and agricultural fires regularly occur
    corecore