82 research outputs found
Spin chains and combinatorics: twisted boundary conditions
The finite XXZ Heisenberg spin chain with twisted boundary conditions was
considered. For the case of even number of sites , anisotropy parameter -1/2
and twisting angle the Hamiltonian of the system possesses an
eigenvalue . The explicit form of the corresponding eigenvector was
found for . Conjecturing that this vector is the ground state of the
system we made and verified several conjectures related to the norm of the
ground state vector, its component with maximal absolute value and some
correlation functions, which have combinatorial nature. In particular, the
squared norm of the ground state vector is probably coincides with the number
of half-turn symmetric alternating sign matrices.Comment: LaTeX file, 7 page
Bethe roots and refined enumeration of alternating-sign matrices
The properties of the most probable ground state candidate for the XXZ spin
chain with the anisotropy parameter equal to -1/2 and an odd number of sites is
considered. Some linear combinations of the components of the considered state,
divided by the maximal component, coincide with the elementary symmetric
polynomials in the corresponding Bethe roots. It is proved that those
polynomials are equal to the numbers providing the refined enumeration of the
alternating-sign matrices of order M+1 divided by the total number of the
alternating-sign matrices of order M, for the chain of length 2M+1.Comment: LaTeX 2e, 12 pages, minor corrections, references adde
On the domain wall partition functions of level-1 affine so(n) vertex models
We derive determinant expressions for domain wall partition functions of
level-1 affine so(n) vertex models, n >= 4, at discrete values of the crossing
parameter lambda = m pi / 2(n-3), m in Z, in the critical regime.Comment: 14 pages, 13 figures included in latex fil
The Razumov-Stroganov conjecture: Stochastic processes, loops and combinatorics
A fascinating conjectural connection between statistical mechanics and
combinatorics has in the past five years led to the publication of a number of
papers in various areas, including stochastic processes, solvable lattice
models and supersymmetry. This connection, known as the Razumov-Stroganov
conjecture, expresses eigenstates of physical systems in terms of objects known
from combinatorics, which is the mathematical theory of counting. This note
intends to explain this connection in light of the recent papers by Zinn-Justin
and Di Francesco.Comment: 6 pages, 4 figures, JSTAT News & Perspective
Six - Vertex Model with Domain wall boundary conditions. Variable inhomogeneities
We consider the six-vertex model with domain wall boundary conditions. We
choose the inhomogeneities as solutions of the Bethe Ansatz equations. The
Bethe Ansatz equations have many solutions, so we can consider a wide variety
of inhomogeneities. For certain choices of the inhomogeneities we study arrow
correlation functions on the horizontal line going through the centre. In
particular we obtain a multiple integral representation for the emptiness
formation probability that generalizes the known formul\ae for XXZ
antiferromagnets.Comment: 12 pages, 1 figur
A refined Razumov-Stroganov conjecture II
We extend a previous conjecture [cond-mat/0407477] relating the
Perron-Frobenius eigenvector of the monodromy matrix of the O(1) loop model to
refined numbers of alternating sign matrices. By considering the O(1) loop
model on a semi-infinite cylinder with dislocations, we obtain the generating
function for alternating sign matrices with prescribed positions of 1's on
their top and bottom rows. This seems to indicate a deep correspondence between
observables in both models.Comment: 21 pages, 10 figures (3 in text), uses lanlmac, hyperbasics and epsf
macro
The Importance of being Odd
In this letter I consider mainly a finite XXZ spin chain with periodic
boundary conditions and \bf{odd} \rm number of sites. This system is described
by the Hamiltonian . As it turned out, its ground state
energy is exactly proportional to the number of sites for a special
value of the asymmetry parameter . The trigonometric polynomial
, zeroes of which being the parameters of the ground state Bethe
eigenvector is explicitly constructed. This polynomial of degree
satisfy the Baxter T-Q equation. Using the second independent solution of this
equation corresponding to the same eigenvalue of the transfer matrix, it is
possible to find a derivative of the ground state energy w.r.t. the asymmetry
parameter. This derivative is closely connected with the correlation function
. In its turn this correlation
function is related to an average number of spin strings for the ground state
of the system under consideration: . I would like
to stress once more that all these simple formulas are \bf wrong \rm in the
case of even number of sites. Exactly this case is usually considered.Comment: 9 pages, based on the talk given at NATO Advanced Research Workshop
"Dynamical Symmetries in Integrable Two-dimensional Quantum Field Theories
and Lattice Models", 25-30 September 2000, Kyiv, Ukraine. New references are
added plus some minor correction
Conformal invariance and its breaking in a stochastic model of a fluctuating interface
Using Monte-Carlo simulations on large lattices, we study the effects of
changing the parameter (the ratio of the adsorption and desorption rates)
of the raise and peel model. This is a nonlocal stochastic model of a
fluctuating interface. We show that for the system is massive, for
it is massless and conformal invariant. For the conformal
invariance is broken. The system is in a scale invariant but not conformal
invariant phase. As far as we know it is the first example of a system which
shows such a behavior. Moreover in the broken phase, the critical exponents
vary continuously with the parameter . This stays true also for the critical
exponent which characterizes the probability distribution function of
avalanches (the critical exponent staying unchanged).Comment: 22 pages and 20 figure
Higher spin vertex models with domain wall boundary conditions
We derive determinant expressions for the partition functions of spin-k/2
vertex models on a finite square lattice with domain wall boundary conditions.Comment: 14 pages, 12 figures. Minor corrections. Version to appear in JSTA
On two-point boundary correlations in the six-vertex model with DWBC
The six-vertex model with domain wall boundary conditions (DWBC) on an N x N
square lattice is considered. The two-point correlation function describing the
probability of having two vertices in a given state at opposite (top and
bottom) boundaries of the lattice is calculated. It is shown that this
two-point boundary correlator is expressible in a very simple way in terms of
the one-point boundary correlators of the model on N x N and (N-1) x (N-1)
lattices. In alternating sign matrix (ASM) language this result implies that
the doubly refined x-enumerations of ASMs are just appropriate combinations of
the singly refined ones.Comment: v2: a reference added, typos correcte
- …