82 research outputs found

    Spin chains and combinatorics: twisted boundary conditions

    Full text link
    The finite XXZ Heisenberg spin chain with twisted boundary conditions was considered. For the case of even number of sites NN, anisotropy parameter -1/2 and twisting angle 2π/32 \pi /3 the Hamiltonian of the system possesses an eigenvalue −3N/2-3N/2. The explicit form of the corresponding eigenvector was found for N≤12N \le 12. Conjecturing that this vector is the ground state of the system we made and verified several conjectures related to the norm of the ground state vector, its component with maximal absolute value and some correlation functions, which have combinatorial nature. In particular, the squared norm of the ground state vector is probably coincides with the number of half-turn symmetric alternating sign N×NN \times N matrices.Comment: LaTeX file, 7 page

    Bethe roots and refined enumeration of alternating-sign matrices

    Full text link
    The properties of the most probable ground state candidate for the XXZ spin chain with the anisotropy parameter equal to -1/2 and an odd number of sites is considered. Some linear combinations of the components of the considered state, divided by the maximal component, coincide with the elementary symmetric polynomials in the corresponding Bethe roots. It is proved that those polynomials are equal to the numbers providing the refined enumeration of the alternating-sign matrices of order M+1 divided by the total number of the alternating-sign matrices of order M, for the chain of length 2M+1.Comment: LaTeX 2e, 12 pages, minor corrections, references adde

    On the domain wall partition functions of level-1 affine so(n) vertex models

    Full text link
    We derive determinant expressions for domain wall partition functions of level-1 affine so(n) vertex models, n >= 4, at discrete values of the crossing parameter lambda = m pi / 2(n-3), m in Z, in the critical regime.Comment: 14 pages, 13 figures included in latex fil

    The Razumov-Stroganov conjecture: Stochastic processes, loops and combinatorics

    Full text link
    A fascinating conjectural connection between statistical mechanics and combinatorics has in the past five years led to the publication of a number of papers in various areas, including stochastic processes, solvable lattice models and supersymmetry. This connection, known as the Razumov-Stroganov conjecture, expresses eigenstates of physical systems in terms of objects known from combinatorics, which is the mathematical theory of counting. This note intends to explain this connection in light of the recent papers by Zinn-Justin and Di Francesco.Comment: 6 pages, 4 figures, JSTAT News & Perspective

    Six - Vertex Model with Domain wall boundary conditions. Variable inhomogeneities

    Full text link
    We consider the six-vertex model with domain wall boundary conditions. We choose the inhomogeneities as solutions of the Bethe Ansatz equations. The Bethe Ansatz equations have many solutions, so we can consider a wide variety of inhomogeneities. For certain choices of the inhomogeneities we study arrow correlation functions on the horizontal line going through the centre. In particular we obtain a multiple integral representation for the emptiness formation probability that generalizes the known formul\ae for XXZ antiferromagnets.Comment: 12 pages, 1 figur

    A refined Razumov-Stroganov conjecture II

    Full text link
    We extend a previous conjecture [cond-mat/0407477] relating the Perron-Frobenius eigenvector of the monodromy matrix of the O(1) loop model to refined numbers of alternating sign matrices. By considering the O(1) loop model on a semi-infinite cylinder with dislocations, we obtain the generating function for alternating sign matrices with prescribed positions of 1's on their top and bottom rows. This seems to indicate a deep correspondence between observables in both models.Comment: 21 pages, 10 figures (3 in text), uses lanlmac, hyperbasics and epsf macro

    The Importance of being Odd

    Full text link
    In this letter I consider mainly a finite XXZ spin chain with periodic boundary conditions and \bf{odd} \rm number of sites. This system is described by the Hamiltonian Hxxz=−∑j=1N{σjxσj+1x+σjyσj+1y+Δσjzσj+1z}H_{xxz}=-\sum_{j=1}^{N}\{\sigma_j^{x}\sigma_{j+1}^{x} +\sigma_j^{y}\sigma_{j+1}^{y} +\Delta \sigma_j^z\sigma_{j+1}^z\}. As it turned out, its ground state energy is exactly proportional to the number of sites E=−3N/2E=-3N/2 for a special value of the asymmetry parameter Δ=−1/2\Delta=-1/2. The trigonometric polynomial q(u)q(u), zeroes of which being the parameters of the ground state Bethe eigenvector is explicitly constructed. This polynomial of degree n=(N−1)/2n=(N-1)/2 satisfy the Baxter T-Q equation. Using the second independent solution of this equation corresponding to the same eigenvalue of the transfer matrix, it is possible to find a derivative of the ground state energy w.r.t. the asymmetry parameter. This derivative is closely connected with the correlation function =−1/2+3/2N2 =-1/2+3/2N^2. In its turn this correlation function is related to an average number of spin strings for the ground state of the system under consideration: =3/8(N−1/N) = {3/8}(N-1/N). I would like to stress once more that all these simple formulas are \bf wrong \rm in the case of even number of sites. Exactly this case is usually considered.Comment: 9 pages, based on the talk given at NATO Advanced Research Workshop "Dynamical Symmetries in Integrable Two-dimensional Quantum Field Theories and Lattice Models", 25-30 September 2000, Kyiv, Ukraine. New references are added plus some minor correction

    Conformal invariance and its breaking in a stochastic model of a fluctuating interface

    Full text link
    Using Monte-Carlo simulations on large lattices, we study the effects of changing the parameter uu (the ratio of the adsorption and desorption rates) of the raise and peel model. This is a nonlocal stochastic model of a fluctuating interface. We show that for 0<u<10<u<1 the system is massive, for u=1u=1 it is massless and conformal invariant. For u>1u>1 the conformal invariance is broken. The system is in a scale invariant but not conformal invariant phase. As far as we know it is the first example of a system which shows such a behavior. Moreover in the broken phase, the critical exponents vary continuously with the parameter uu. This stays true also for the critical exponent Ï„\tau which characterizes the probability distribution function of avalanches (the critical exponent DD staying unchanged).Comment: 22 pages and 20 figure

    Higher spin vertex models with domain wall boundary conditions

    Full text link
    We derive determinant expressions for the partition functions of spin-k/2 vertex models on a finite square lattice with domain wall boundary conditions.Comment: 14 pages, 12 figures. Minor corrections. Version to appear in JSTA

    On two-point boundary correlations in the six-vertex model with DWBC

    Full text link
    The six-vertex model with domain wall boundary conditions (DWBC) on an N x N square lattice is considered. The two-point correlation function describing the probability of having two vertices in a given state at opposite (top and bottom) boundaries of the lattice is calculated. It is shown that this two-point boundary correlator is expressible in a very simple way in terms of the one-point boundary correlators of the model on N x N and (N-1) x (N-1) lattices. In alternating sign matrix (ASM) language this result implies that the doubly refined x-enumerations of ASMs are just appropriate combinations of the singly refined ones.Comment: v2: a reference added, typos correcte
    • …
    corecore