150 research outputs found

    Spin chains and combinatorics: twisted boundary conditions

    Full text link
    The finite XXZ Heisenberg spin chain with twisted boundary conditions was considered. For the case of even number of sites NN, anisotropy parameter -1/2 and twisting angle 2π/32 \pi /3 the Hamiltonian of the system possesses an eigenvalue 3N/2-3N/2. The explicit form of the corresponding eigenvector was found for N12N \le 12. Conjecturing that this vector is the ground state of the system we made and verified several conjectures related to the norm of the ground state vector, its component with maximal absolute value and some correlation functions, which have combinatorial nature. In particular, the squared norm of the ground state vector is probably coincides with the number of half-turn symmetric alternating sign N×NN \times N matrices.Comment: LaTeX file, 7 page

    On the domain wall partition functions of level-1 affine so(n) vertex models

    Full text link
    We derive determinant expressions for domain wall partition functions of level-1 affine so(n) vertex models, n >= 4, at discrete values of the crossing parameter lambda = m pi / 2(n-3), m in Z, in the critical regime.Comment: 14 pages, 13 figures included in latex fil

    SM(2,4k) fermionic characters and restricted jagged partitions

    Full text link
    A derivation of the basis of states for the SM(2,4k)SM(2,4k) superconformal minimal models is presented. It relies on a general hypothesis concerning the role of the null field of dimension 2k1/22k-1/2. The basis is expressed solely in terms of GrG_r modes and it takes the form of simple exclusion conditions (being thus a quasi-particle-type basis). Its elements are in correspondence with (2k1)(2k-1)-restricted jagged partitions. The generating functions of the latter provide novel fermionic forms for the characters of the irreducible representations in both Ramond and Neveu-Schwarz sectors.Comment: 12 page

    Conformal invariance and its breaking in a stochastic model of a fluctuating interface

    Full text link
    Using Monte-Carlo simulations on large lattices, we study the effects of changing the parameter uu (the ratio of the adsorption and desorption rates) of the raise and peel model. This is a nonlocal stochastic model of a fluctuating interface. We show that for 0<u<10<u<1 the system is massive, for u=1u=1 it is massless and conformal invariant. For u>1u>1 the conformal invariance is broken. The system is in a scale invariant but not conformal invariant phase. As far as we know it is the first example of a system which shows such a behavior. Moreover in the broken phase, the critical exponents vary continuously with the parameter uu. This stays true also for the critical exponent τ\tau which characterizes the probability distribution function of avalanches (the critical exponent DD staying unchanged).Comment: 22 pages and 20 figure

    Six - Vertex Model with Domain wall boundary conditions. Variable inhomogeneities

    Full text link
    We consider the six-vertex model with domain wall boundary conditions. We choose the inhomogeneities as solutions of the Bethe Ansatz equations. The Bethe Ansatz equations have many solutions, so we can consider a wide variety of inhomogeneities. For certain choices of the inhomogeneities we study arrow correlation functions on the horizontal line going through the centre. In particular we obtain a multiple integral representation for the emptiness formation probability that generalizes the known formul\ae for XXZ antiferromagnets.Comment: 12 pages, 1 figur

    A refined Razumov-Stroganov conjecture

    Full text link
    We extend the Razumov-Stroganov conjecture relating the groundstate of the O(1) spin chain to alternating sign matrices, by relating the groundstate of the monodromy matrix of the O(1) model to the so-called refined alternating sign matrices, i.e. with prescribed configuration of their first row, as well as to refined fully-packed loop configurations on a square grid, keeping track both of the loop connectivity and of the configuration of their top row. We also conjecture a direct relation between this groundstate and refined totally symmetric self-complementary plane partitions, namely, in their formulation as sets of non-intersecting lattice paths, with prescribed last steps of all paths.Comment: 20 pages, 4 figures, uses epsf and harvmac macros a few typos correcte

    The Razumov-Stroganov conjecture: Stochastic processes, loops and combinatorics

    Full text link
    A fascinating conjectural connection between statistical mechanics and combinatorics has in the past five years led to the publication of a number of papers in various areas, including stochastic processes, solvable lattice models and supersymmetry. This connection, known as the Razumov-Stroganov conjecture, expresses eigenstates of physical systems in terms of objects known from combinatorics, which is the mathematical theory of counting. This note intends to explain this connection in light of the recent papers by Zinn-Justin and Di Francesco.Comment: 6 pages, 4 figures, JSTAT News & Perspective

    Higher spin vertex models with domain wall boundary conditions

    Full text link
    We derive determinant expressions for the partition functions of spin-k/2 vertex models on a finite square lattice with domain wall boundary conditions.Comment: 14 pages, 12 figures. Minor corrections. Version to appear in JSTA

    Bethe roots and refined enumeration of alternating-sign matrices

    Full text link
    The properties of the most probable ground state candidate for the XXZ spin chain with the anisotropy parameter equal to -1/2 and an odd number of sites is considered. Some linear combinations of the components of the considered state, divided by the maximal component, coincide with the elementary symmetric polynomials in the corresponding Bethe roots. It is proved that those polynomials are equal to the numbers providing the refined enumeration of the alternating-sign matrices of order M+1 divided by the total number of the alternating-sign matrices of order M, for the chain of length 2M+1.Comment: LaTeX 2e, 12 pages, minor corrections, references adde

    A refined Razumov-Stroganov conjecture II

    Full text link
    We extend a previous conjecture [cond-mat/0407477] relating the Perron-Frobenius eigenvector of the monodromy matrix of the O(1) loop model to refined numbers of alternating sign matrices. By considering the O(1) loop model on a semi-infinite cylinder with dislocations, we obtain the generating function for alternating sign matrices with prescribed positions of 1's on their top and bottom rows. This seems to indicate a deep correspondence between observables in both models.Comment: 21 pages, 10 figures (3 in text), uses lanlmac, hyperbasics and epsf macro
    corecore