5,657 research outputs found

    A variant of the Mukai pairing via deformation quantization

    Full text link
    We give a new method to prove a formula computing a variant of Caldararu's Mukai pairing \cite{Cal1}. Our method is based on some important results in the area of deformation quantization. In particular, part of the work of Kashiwara and Schapira in \cite{KS} as well as an algebraic index theorem of Bressler, Nest and Tsygan in \cite{BNT},\cite{BNT1} and \cite{BNT2} are used. It is hoped that our method is useful for generalization to settings involving certain singular varieties.Comment: 8 pages. Comments and suggestions welcom

    Higher Descent Data as a Homotopy Limit

    Get PDF
    We define the 2-groupoid of descent data assigned to a cosimplicial 2-groupoid and present it as the homotopy limit of the cosimplicial space gotten after applying the 2-nerve in each cosimplicial degree. This can be applied also to the case of nn-groupoids thus providing an analogous presentation of "descent data" in higher dimensions.Comment: Appeared in JHR

    Simulation of gain stability of THGEM gas-avalanche particle detectors

    Full text link
    Charging-up processes affecting gain stability in Thick Gas Electron Multipliers (THGEM) were studied with a dedicated simulation toolkit. Integrated with Garfield++, it provides an effective platform for systematic phenomenological studies of charging-up processes in MPGD detectors. We describe the simulation tool and the fine-tuning of the step-size required for the algorithm convergence, in relation to physical parameters. Simulation results of gain stability over time in THGEM detectors are presented, exploring the role of electrode-thickness and applied voltage on its evolution. The results show that the total amount of irradiated charge through electrode's hole needed for reaching gain stabilization is in the range of tens to hundreds of pC, depending on the detector geometry and operational voltage. These results are in agreement with experimental observations presented previously

    Formal Hecke algebras and algebraic oriented cohomology theories

    Full text link
    In the present paper we generalize the construction of the nil Hecke ring of Kostant-Kumar to the context of an arbitrary algebraic oriented cohomology theory of Levine-Morel and Panin-Smirnov, e.g. to Chow groups, Grothendieck's K_0, connective K-theory, elliptic cohomology, and algebraic cobordism. The resulting object, which we call a formal (affine) Demazure algebra, is parameterized by a one-dimensional commutative formal group law and has the following important property: specialization to the additive and multiplicative periodic formal group laws yields completions of the nil Hecke and the 0-Hecke rings respectively. We also introduce a deformed version of the formal (affine) Demazure algebra, which we call a formal (affine) Hecke algebra. We show that the specialization of the formal (affine) Hecke algebra to the additive and multiplicative periodic formal group laws gives completions of the degenerate (affine) Hecke algebra and the usual (affine) Hecke algebra respectively. We show that all formal affine Demazure algebras (and all formal affine Hecke algebras) become isomorphic over certain coefficient rings, proving an analogue of a result of Lusztig.Comment: 28 pages. v2: Some results strengthened and references added. v3: Minor corrections, section numbering changed to match published version. v4: Sign errors in Proposition 6.8(d) corrected. This version incorporates an erratum to the published versio
    corecore