394 research outputs found

    A duality method for mean-field limits with singular interactions

    Full text link
    We introduce a new approach to justify mean-field limits for first-and second-order particle systems with singular interactions. It is based on a duality approach combined with the analysis of linearized dual correlations, and it allows to cover for the first time arbitrary square-integrable interaction forces at possibly vanishing temperature. In case of first-order systems, it allows to recover in particular the mean-field limit to the 2d Euler and Navier-Stokes equations. We postpone to a forthcoming work the development of quantitative estimates and the extension to more singular interactions

    Vanishing viscosity limits for the degenerate lake equations with Navier boundary conditions

    Full text link
    The paper is concerned with the vanishing viscosity limit of the two-dimensional degenerate viscous lake equations when the Navier slip conditions are prescribed on the impermeable boundary of a simply connected bounded regular domain. When the initial vorticity is in the Lebesgue space LqL^q with 2<q2<q\le\infty, we show the degenerate viscous lake equations possess a unique global solution and the solution converges to a corresponding weak solution of the inviscid lake equations. In the special case when the vorticity is in LL^\infty, an explicit convergence rate is obtained

    Regime of Validity of Sound-Proof Atmospheric Flow Models

    Get PDF
    Ogura and Phillips (1962) derived their original anelastic model through systematic formal asymptotics using the flow Mach number as the expansion parameter. To arrive at a reduced model which would simultaneously represent internal gravity waves and the effects of advection, they had to adopt a distinguished limit stating that the dimensionless stability of the background state be of the order of the Mach number squared. For typical flow Mach numbers of M = 1/30 this amounts to total variations of potential temperature across the troposphere of less than one Kelvin, i.e., to unrealistically weak stratication. Various generalizations of Ogura and Phillips' anelastic model have been proposed to remedy this issue, e.g., by Dutton & Fichtl (1969), and Lipps & Hemler (1982). Following the same goals, but a somewhat different route of argumentation, Durran proposed the pseudoincompressible model in 1989. The present paper provides a scale analysis showing that the regime of validity of two of these extended models covers stratification strengths of order of the Mach number to the power 2/3, which corresponds to realistic variations of potential temperature across the pressure scale height of about 30 K

    Existence of global strong solutions in critical spaces for barotropic viscous fluids

    Get PDF
    This paper is dedicated to the study of viscous compressible barotropic fluids in dimension N2N\geq2. We address the question of the global existence of strong solutions for initial data close from a constant state having critical Besov regularity. In a first time, this article show the recent results of \cite{CD} and \cite{CMZ} with a new proof. Our result relies on a new a priori estimate for the velocity, where we introduce a new structure to \textit{kill} the coupling between the density and the velocity as in \cite{H2}. We study so a new variable that we call effective velocity. In a second time we improve the results of \cite{CD} and \cite{CMZ} by adding some regularity on the initial data in particular ρ0\rho_{0} is in H1H^{1}. In this case we obtain global strong solutions for a class of large initial data on the density and the velocity which in particular improve the results of D. Hoff in \cite{5H4}. We conclude by generalizing these results for general viscosity coefficients
    corecore