12 research outputs found

    Fast Iterative Combinatorial Auctions via Bayesian Learning

    Full text link
    Iterative combinatorial auctions (CAs) are often used in multi-billion dollar domains like spectrum auctions, and speed of convergence is one of the crucial factors behind the choice of a specific design for practical applications. To achieve fast convergence, current CAs require careful tuning of the price update rule to balance convergence speed and allocative efficiency. Brero and Lahaie (2018) recently introduced a Bayesian iterative auction design for settings with single-minded bidders. The Bayesian approach allowed them to incorporate prior knowledge into the price update algorithm, reducing the number of rounds to convergence with minimal parameter tuning. In this paper, we generalize their work to settings with no restrictions on bidder valuations. We introduce a new Bayesian CA design for this general setting which uses Monte Carlo Expectation Maximization to update prices at each round of the auction. We evaluate our approach via simulations on CATS instances. Our results show that our Bayesian CA outperforms even a highly optimized benchmark in terms of clearing percentage and convergence speed.Comment: 9 pages, 2 figures, AAAI-1

    Learning Stackelberg Equilibria and Applications to Economic Design Games

    Full text link
    We study the use of reinforcement learning to learn the optimal leader's strategy in Stackelberg games. Learning a leader's strategy has an innate stationarity problem -- when optimizing the leader's strategy, the followers' strategies might shift. To circumvent this problem, we model the followers via no-regret dynamics to converge to a Bayesian Coarse-Correlated Equilibrium (B-CCE) of the game induced by the leader. We then embed the followers' no-regret dynamics in the leader's learning environment, which allows us to formulate our learning problem as a standard POMDP. We prove that the optimal policy of this POMDP achieves the same utility as the optimal leader's strategy in our Stackelberg game. We solve this POMDP using actor-critic methods, where the critic is given access to the joint information of all the agents. Finally, we show that our methods are able to learn optimal leader strategies in a variety of settings of increasing complexity, including indirect mechanisms where the leader's strategy is setting up the mechanism's rules

    Machine Learning-powered Iterative Combinatorial Auctions

    Full text link

    Probably Approximately Efficient Combinatorial Auctions via Machine Learning

    No full text
    A well-known problem in combinatorial auctions (CAs) is that the value space grows exponentially in the number of goods, which often puts a large burden on the bidders and on the auctioneer. In this paper, we introduce a new design paradigm for CAs based on machine learning (ML). Bidders report their values (bids) to a proxy agent by answering a small number of value queries. The proxy agent then uses an ML algorithm to generalize from those bids to the whole value space, and the efficient allocation is computed based on the generalized valuations. We introduce the concept of "probably approximate efficiency (PAE)" to measure the efficiency of the new ML-based auctions, and we formally show how the generelizability of an ML algorithm relates to the efficiency loss incurred by the corresponding ML-based auction. To instantiate our paradigm, we use support vector regression (SVR) as our ML algorithm, which enables us to keep the winner determination problem of the CA tractable. Different parameters of the SVR algorithm allow us to trade off the expressiveness, economic efficiency, and computational efficiency of the CA. Finally, we demonstrate experimentally that, even with a small number of bids, our ML-based auctions are highly efficient with high probability

    Dynamics in network games with local coordination and global congestion effects

    No full text
    Several strategic interactions over social networks display both negative and positive externalities at the same time. E.g., participation to a social media website with limited resources is more appealing the more of your friends participate, while a large total number of participants may slow down the website (because of congestion effects) thus making it less appealing. Similarly, while there are often incentives to choose the same telephone company as the friends and relatives with whom you interact the most frequently, concentration of the market share in the hands of a single firm typically leads to higher costs because of the lack of competition. In this work, we study evolutionary dynamics in network games where the payoff of each player is influenced both by the actions of her neighbors in the network, and by the aggregate of the actions of all the players in the network. In particular, we consider cases where the payoff increases in the number of neighbors who choose the same action (local coordination effect) and decreases in the total number of players choosing the same action (global congestion effect). We study noisy best-response dynamics in networks which are the union of two complete graphs, and prove that the asymptotic behavior of the invariant probability distribution is characterized by two phase transitions with respect to a parameter measuring the relative strength of the local coordination with respect to the global congestion effects. Extensions to random networks with strong community structure are studied through simulations
    corecore