11 research outputs found

    Towards an Airframe Noise Prediction Methodology: Survey of Current Approaches

    Get PDF
    In this paper, we present a critical survey of the current airframe noise (AFN) prediction methodologies. Four methodologies are recognized. These are the fully analytic method, CFD combined with the acoustic analogy, the semi-empirical method and fully numerical method. It is argued that for the immediate need of the aircraft industry, the semi-empirical method based on recent high quality acoustic database is the best available method. The method based on CFD and the Ffowcs William- Hawkings (FW-H) equation with penetrable data surface (FW-Hpds ) has advanced considerably and much experience has been gained in its use. However, more research is needed in the near future particularly in the area of turbulence simulation. The fully numerical method will take longer to reach maturity. Based on the current trends, it is predicted that this method will eventually develop into the method of choice. Both the turbulence simulation and propagation methods need to develop more for this method to become useful. Nonetheless, the authors propose that the method based on a combination of numerical and analytical techniques, e.g., CFD combined with FW-H equation, should also be worked on. In this effort, the current symbolic algebra software will allow more analytical approaches to be incorporated into AFN prediction methods

    A COMPARISON OF COMPUTATIONAL AEROACOUSTIC PREDICTION METHODS FOR

    No full text
    This paper compares two methods for predicting transonic rotor noise for helicopters in hover and forward ight. Both methods rely on a computational uid dynamics (CFD) solution as input to predict the acoustic near and far elds. For this work, the same full-potential rotor code has been used to compute the CFD solution for both acoustic methods. The rst method employs the acoustic analogy as embodied in the Ffowcs Williams{Hawkings (FW{H) equation, including the quadrupole term. The second method uses a rotating Kirchho formulation. Computed results from both methods are compared with one other and with experimental data for both hover and advancing rotor cases. The results are quite good for all cases tested. The sensitivity of both methods to CFD grid resolution and to the choice of the integration surface/volume is investigated. The computational requirements of both methods are comparable; in both cases these requirements are much less than the requirements for the CFD solution

    High-accuracy algorithms for computational aeroacoustics

    No full text
    corecore