9,903 research outputs found

    Physical Mechanisms for Chemotactic Pattern Formation by Bacteria

    Get PDF
    AbstractThis paper formulates a theory for chemotactic pattern formation by the bacteria Escherichia coli in the presence of excreted attractant. In a chemotactically neutral background, through chemoattractant signaling, the bacteria organize into swarm rings and aggregates. The analysis invokes only those physical processes that are both justifiable by known biochemistry and necessary and sufficient for swarm ring migration and aggregate formation. Swarm rings migrate in the absence of an external chemoattractant gradient. The ring motion is caused by the depletion of a substrate that is necessary to produce attractant. Several scaling laws are proposed and are demonstrated to be consistent with experimental data. Aggregate formation corresponds to finite time singularities in which the bacterial density diverges at a point. Instabilities of swarm rings leading to aggregate formation occur via a mechanism similar to aggregate formation itself: when the mass density of the swarm ring exceeds a threshold, the ring collapses cylindrically and then destabilizes into aggregates. This sequence of events is demonstrated both in the theoretical model and in the experiments

    Consequences of wall stiffness for a beta-soft potential

    Full text link
    Modifications of the infinite square well E(5) and X(5) descriptions of transitional nuclear structure are considered. The eigenproblem for a potential with linear sloped walls is solved. The consequences of the introduction of sloped walls and of a quadratic transition operator are investigated.Comment: RevTeX 4, 8 pages, as published in Phys. Rev.

    Thermo-elasticity for anisotropic media in higher dimensions

    Full text link
    In this note we develop tools to study the Cauchy problem for the system of thermo-elasticity in higher dimensions. The theory is developed for general homogeneous anisotropic media under non-degeneracy conditions. For degenerate cases a method of treatment is sketched and for the cases of cubic media and hexagonal media detailed studies are provided.Comment: 33 pages, 5 figure

    The Two Fluid Drop Snap-off Problem: Experiments and Theory

    Get PDF
    We address the dynamics of a drop with viscosity λη\lambda \eta breaking up inside another fluid of viscosity η\eta. For λ=1\lambda=1, a scaling theory predicts the time evolution of the drop shape near the point of snap-off which is in excellent agreement with experiment and previous simulations of Lister and Stone. We also investigate the λ\lambda dependence of the shape and breaking rate.Comment: 4 pages, 3 figure

    Purification and properties of the very high density lipoprotein from the hemolymph of adult Triatoma infestans

    Get PDF
    The very high density lipoprotein (VHDL) of Triatoma injesfum hemolymph from adult males has been isolated and purified by two-step density gradient ultracentrifugation. It appears to be homogeneous as judged by native polyacrylamide gel electrophoresis. The content of VHDL in hemolymph was estimated to be 8 mg proteidml. The purified protein has a molecular weight (M,) of 450,000, is composed of six subunits of M, p 77,000, and possesses a high content of aromatic amino acids. This protein is glycosylated and contains 3% of lipids by weight with a remarkable amount of free fatty acids (25% of total lipids). The I: injesfans VHDL has a different lipid and amino acid composition from lipophorin. The lipid composition and the spectroscopic studies using cis-parinaric acid indicated a high fatty acid binding affinity. It has nine binding sites per mol of VHDL. Competence studies revealed that VHDL has its highest affinity for the binding of palmitic acid followed by stearic and arachidonic acids.Instituto de Investigaciones Bioquímicas de La Plat

    Statistical properties of a free-electron laser revealed by the Hanbury Brown and Twiss interferometry

    Full text link
    We present a comprehensive experimental analysis of statistical properties of the self-amplified spontaneous emission (SASE) free-electron laser (FEL) FLASH at DESY in Hamburg by means of Hanbury Brown and Twiss (HBT) interferometry. The experiments were performed at the FEL wavelengths of 5.5 nm, 13.4 nm, and 20.8 nm. We determined the 2-nd order intensity correlation function for all wavelengths and different operation conditions of FLASH. In all experiments a high degree of spatial coherence (above 50%) was obtained. Our analysis performed in spatial and spectral domains provided us with the independent measurements of an average pulse duration of the FEL that were below 60 fs. To explain complicated behaviour of the 2-nd order intensity correlation function we developed advanced theoretical model that includes the presence of multiple beams and external positional jitter of the FEL pulses. By this analysis we determined that in most experiments several beams were present in radiating field and in one of the experiments external positional jitter was about 25% of the beam size. We envision that methods developed in our study will be used widely for analysis and diagnostics of the FEL radiation.Comment: 29 pages, 14 figures, 3 table

    A Spectral Method for Elliptic Equations: The Neumann Problem

    Full text link
    Let Ω\Omega be an open, simply connected, and bounded region in Rd\mathbb{R}^{d}, d≥2d\geq2, and assume its boundary ∂Ω\partial\Omega is smooth. Consider solving an elliptic partial differential equation −Δu+γu=f-\Delta u+\gamma u=f over Ω\Omega with a Neumann boundary condition. The problem is converted to an equivalent elliptic problem over the unit ball BB, and then a spectral Galerkin method is used to create a convergent sequence of multivariate polynomials unu_{n} of degree ≤n\leq n that is convergent to uu. The transformation from Ω\Omega to BB requires a special analytical calculation for its implementation. With sufficiently smooth problem parameters, the method is shown to be rapidly convergent. For u∈C∞(Ω‾)u\in C^{\infty}(\overline{\Omega}) and assuming ∂Ω\partial\Omega is a C∞C^{\infty} boundary, the convergence of ∥u−un∥H1\Vert u-u_{n}\Vert_{H^{1}} to zero is faster than any power of 1/n1/n. Numerical examples in R2\mathbb{R}^{2} and R3\mathbb{R}^{3} show experimentally an exponential rate of convergence.Comment: 23 pages, 11 figure

    Scattering series in mobility problem for suspensions

    Full text link
    The mobility problem for suspension of spherical particles immersed in an arbitrary flow of a viscous, incompressible fluid is considered in the regime of low Reynolds numbers. The scattering series which appears in the mobility problem is simplified. The simplification relies on the reduction of the number of types of single-particle scattering operators appearing in the scattering series. In our formulation there is only one type of single-particle scattering operator.Comment: 11 page

    A spectral method for elliptic equations: the Dirichlet problem

    Full text link
    An elliptic partial differential equation Lu=f with a zero Dirichlet boundary condition is converted to an equivalent elliptic equation on the unit ball. A spectral Galerkin method is applied to the reformulated problem, using multivariate polynomials as the approximants. For a smooth boundary and smooth problem parameter functions, the method is proven to converge faster than any power of 1/n with n the degree of the approximate Galerkin solution. Examples in two and three variables are given as numerical illustrations. Empirically, the condition number of the associated linear system increases like O(N), with N the order of the linear system.Comment: This is latex with the standard article style, produced using Scientific Workplace in a portable format. The paper is 22 pages in length with 8 figure
    • …
    corecore