18,145 research outputs found

    The \u3cem\u3emir-51\u3c/em\u3e Family of MicroRNAs Functions in Diverse Regulatory Pathways in \u3cem\u3eCaenorhbditis elegans\u3c/em\u3e

    Get PDF
    The mir-51 family of microRNAs (miRNAs) in C. elegans are part of the deeply conserved miR-99/100 family. While loss of all six family members (mir-51-56) in C. elegans results in embryonic lethality, loss of individual mir-51 family members results in a suppression of retarded developmental timing defects associated with the loss of alg-1. The mechanism of this suppression of developmental timing defects is unknown. To address this, we characterized the function of the mir-51 family in the developmental timing pathway. We performed genetic analysis and determined that mir-51 family members regulate the developmental timing pathway in the L2 stage upstream of hbl-1. Loss of the mir-51 family member, mir-52, suppressed retarded developmental timing defects associated with the loss of let-7 family members and lin-46. Enhancement of precocious defects was observed for mutations in lin-14, hbl-1, and mir-48(ve33), but not later acting developmental timing genes. Interestingly, mir-51 family members showed genetic interactions with additional miRNA-regulated pathways, which are regulated by the let-7 and mir-35 family miRNAs, lsy-6, miR-240/786, and miR-1. Loss of mir-52 likely does not suppress miRNA-regulated pathways through an increase in miRNA biogenesis or miRNA activity. We found no increase in the levels of four mature miRNAs, let-7, miR-58, miR-62 or miR-244, in mir-52 or mir-52/53/54/55/56 mutant worms. In addition, we observed no increase in the activity of ectopic lsy-6 in the repression of a downstream target in uterine cells in worms that lack mir-52. We propose that the mir-51 family functions broadly through the regulation of multiple targets, which have not yet been identified, in diverse regulatory pathways in C. elegans

    A Mathematical Model for Estimating Biological Damage Caused by Radiation

    Full text link
    We propose a mathematical model for estimating biological damage caused by low-dose irradiation. We understand that the Linear Non Threshold (LNT) hypothesis is realized only in the case of no recovery effects. In order to treat the realistic living objects, our model takes into account various types of recovery as well as proliferation mechanism, which may change the resultant damage, especially for the case of lower dose rate irradiation. It turns out that the lower the radiation dose rate, the safer the irradiated system of living object (which is called symbolically "tissue" hereafter) can have chances to survive, which can reproduce the so-called dose and dose-rate effectiveness factor (DDREF).Comment: 22 pages, 6 Figs, accepted in Journal of the Physical Society of Japa

    Loss of Individual MicroRNAs Causes Mutant Phenotypes in Sensitized Genetic Backgrounds in \u3cem\u3eC. elegans\u3c/em\u3e

    Get PDF
    MicroRNAs (miRNAs) are small, noncoding RNAs that regulate the translation and/or stability of their mRNA targets. Previous work showed that for most miRNA genes of C. elegans, single-gene knockouts did not result in detectable mutant phenotypes. This may be due, in part, to functional redundancy between miRNAs. However, in most cases, worms carrying deletions of all members of a miRNA family do not display strong mutant phenotypes. They may function together with unrelated miRNAs or with non-miRNA genes in regulatory networks, possibly to ensure the robustness of developmental mechanisms. To test this, we examined worms lacking individual miRNAs in genetically sensitized backgrounds. These include genetic backgrounds with reduced processing and activity of all miRNAs or with reduced activity of a wide array of regulatory pathways. With these two approaches, we identified mutant phenotypes for 25 out of 31 miRNAs included in this analysis. Our findings describe biological roles for individual miRNAs and suggest that the use of sensitized genetic backgrounds provides an efficient approach for miRNA functional analysis

    DOMESTIC RELATIONS Alimony and Child Support: Provide for Enforcement and Collection

    Get PDF
    The Act provides for service of process in proceedings to enforce alimony and child support payments, for service to be perfected, even if the respondent does not answer, and for the respondent to be charged with costs. The Act also changes the conditions under which the Department of Human Resources accepts applications for support enforcement services, provides for reimbursement of the department for attorneys\u27 fees, and authorizes the collection of interest on judgments initiated by the department. July 1, 198

    Design and fabrication of a centrifugally driven microfluidic disk for fully integrated metabolic assays on whole blood

    Get PDF
    For the first time, we present a novel and fully integrated centrifugal microfluidic “ lab-on-a-disk” for rapid metabolic assays in human whole blood. All essential steps comprising blood sampling, metering, plasma extraction and the final optical detection are conducted within t = 150 s in passive structures integrated on one disposable disk. Our technology features a novel plasma extraction structure (V = 500 nL, CV < 5%) without using any hydrophobic microfluidics where the purified plasma (cRBC< 0.11%) is centrifugally separated and subsequently extracted through a capillarily primed extraction channel into the detection chamber. While this capillary extraction requires precisely defined, narrow micro-structures, the reactive mixing and detection is most efficient within larger cavities. The corresponding manufacturing technique of these macro- and micro structures in the range of 30 µ m to 1000 µ m is also presented for the first time: A novel, cost-efficient hybrid prototyping technique of a multiscale epoxy master for subsequent hot embossing of polymer disks

    Development of Knife-Edge Ridges on Ion-Bombarded Surfaces

    Full text link
    We demonstrate in both laboratory and numerical experiments that ion bombardment of a modestly sloped surface can create knife-edge like ridges with extremely high slopes. Small pre-fabricated pits expand under ion bombardment, and the collision of two such pits creates knife-edge ridges. Both laboratory and numerical experiments show that the pit propagation speed and the precise shape of the knife edge ridges are universal, independent of initial conditions, as has been predicted theoretically. These observations suggest a novel method of fabrication in which a surface is pre-patterned so that it dynamically evolves to a desired target pattern made of knife-edge ridges.Comment: 5 pages, 4 figure

    Scar Revision and Secondary Reconstruction for Skin Cancer

    Get PDF

    Chemotactic Collapse and Mesenchymal Morphogenesis

    Full text link
    We study the effect of chemotactic signaling among mesenchymal cells. We show that the particular physiology of the mesenchymal cells allows one-dimensional collapse in contrast to the case of bacteria, and that the mesenchymal morphogenesis represents thus a more complex type of pattern formation than those found in bacterial colonies. We finally compare our theoretical predictions with recent in vitro experiments

    F-15B Quiet Spike Aeroservoelastic Ground and Flight Test

    Get PDF
    This viewgraph presentation reviews aeroservoelastic analyses of the F-15B Quiet Spike aircraft that includes ground and flight tests
    corecore