3 research outputs found

    Burden of Stroke in Europe:An Analysis of the Global Burden of Disease Study Findings From 2010 to 2019

    Get PDF
    BACKGROUND:While most European Regions perform well in global comparisons, large discrepancies within stroke epidemiological parameters exist across Europe. The objective of this analysis was to evaluate the stroke burden across European regions and countries in 2019 and its difference to 2010.METHODS:The GBD 2019 analytical tools were used to evaluate regional and country-specific estimates of incidence, prevalence, deaths, and disability-adjusted life years of stroke for the European Region as defined by the World Health Organization, with its 53 member countries (EU-53) and for European Union as defined in 2019, with its 28 member countries (EU-28), between 2010 and 2019. Results were analyzed at a regional, subregional, and country level.RESULTS:In EU-53, the absolute number of incident and prevalent strokes increased by 2% (uncertainty interval [UI], 0%–4%), from 1 767 280 to 1 802 559 new cases, and by 4% (UI, 3%–5%) between 2010 and 2019, respectively. In EU-28, the absolute number of prevalent strokes and stroke-related deaths increased by 4% (UI, 2%–5%) and by 6% (UI, 1%–10%), respectively. All-stroke age-standardized mortality rates, however, decreased by 18% (UI, −22% to −14%), from 82 to 67 per 100 000 people in the EU-53, and by 15% (UI, −18% to −11%), from 49.3 to 42.0 per 100 000 people in EU-28. Despite most countries presenting reductions in age-adjusted incidence, prevalence, mortality, and disability-adjusted life year rates, these rates remained 1.4×, 1.2×, 1.6×, and 1.7× higher in EU-53 in comparison to the EU-28.CONCLUSIONS:EU-53 showed a 2% increase in incident strokes, while they remained stable in EU-28. Age-standardized rates were consistently lower for all-stroke burden parameters in EU-28 in comparison to EU-53, and huge discrepancies in incidence, prevalence, mortality, and disability-adjusted life-year rates were observed between individual countries.<br/

    Genome-wide interaction study of dietary intake of fibre, fruits, and vegetables with risk of colorectal cancer

    No full text
    Background: Consumption of fibre, fruits and vegetables have been linked with lower colorectal cancer (CRC) risk. A genome-wide gene-environment (G × E) analysis was performed to test whether genetic variants modify these associations. Methods: A pooled sample of 45 studies including up to 69,734 participants (cases: 29,896; controls: 39,838) of European ancestry were included. To identify G × E interactions, we used the traditional 1–degree-of-freedom (DF) G × E test and to improve power a 2-step procedure and a 3DF joint test that investigates the association between a genetic variant and dietary exposure, CRC risk and G × E interaction simultaneously. Findings: The 3-DF joint test revealed two significant loci with p-value <5 × 10−8. Rs4730274 close to the SLC26A3 gene showed an association with fibre (p-value: 2.4 × 10−3) and G × fibre interaction with CRC (OR per quartile of fibre increase = 0.87, 0.80, and 0.75 for CC, TC, and TT genotype, respectively; G × E p-value: 1.8 × 10−7). Rs1620977 in the NEGR1 gene showed an association with fruit intake (p-value: 1.0 × 10−8) and G × fruit interaction with CRC (OR per quartile of fruit increase = 0.75, 0.65, and 0.56 for AA, AG, and GG genotype, respectively; G × E -p-value: 0.029). Interpretation: We identified 2 loci associated with fibre and fruit intake that also modify the association of these dietary factors with CRC risk. Potential mechanisms include chronic inflammatory intestinal disorders, and gut function. However, further studies are needed for mechanistic validation and replication of findings
    corecore