285 research outputs found

    Static Holes in the Geometrically Frustrated Bow Tie Ladder

    Full text link
    We investigate the doping of a geometrically frustrated spin ladder with static holes by a complementary approach using exact diagonalization and quantum dimers. Results for thermodynamic properties, the singlet density of states, the hole-binding energy and the spin correlations will be presented. For the undoped systems the ground state is non-degenerate, with translationally invariant nearest-neighbor spin correlations. In the doped case, we find that static holes polarize their vicinity by a localization of singlets in order to reduce the frustration. This polarization induces short range repulsive forces between two holes and an oscillatory behavior of the long range two-hole energy. For most quantities investigated, we find very good agreement between the quantum dimer approach and the results from exact diagonalization.Comment: 7 pages, 9 eps figure

    Quantum phases of a frustrated four-leg spin tube

    Get PDF
    We study the ground state phase diagram of a frustrated spin-1/2 four-leg tube. Using a variety of complementary techniques, namely density matrix renormalization group, exact diagonalization, Schwinger boson mean field theory, quantum Monte-Carlo and series expansion, we explore the parameter space of this model in the regime of all-antiferromagnetic exchange. In contrast to unfrustrated four-leg tubes we uncover a rich phase diagram. Apart from the Luttinger liquid fixed point in the limit of decoupled legs, this comprises several gapped ground states, namely a plaquette, an incommensurate, and an antiferromagnetic quasi spin-2 chain phase. The transitions between these phases are analyzed in terms of total energy and static structure factor calculations and are found to be of (weak) first order. Despite the absence of long range order in the quantum case, remarkable similarities to the classical phase diagram are uncovered, with the exception of the icommensurate regime, which is strongly renormalized by quantum fluctuations. In the limit of large leg exchange the tube exhibits a deconfinement cross-over from gapped magnon like excitations to spinons.Fil: Arlego, Marcelo José Fabián. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Brenig, W.. Technische Universität Braunschweig; AlemaniaFil: Rahnavard, Y.. Technische Universität Braunschweig; AlemaniaFil: Willenberg, B.. Technische Universität Braunschweig; AlemaniaFil: Rosales, Héctor Diego. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rossini, Gerardo Luis. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Magnon Heat Transport in doped La2CuO4\rm La_2CuO_4

    Full text link
    We present results of the thermal conductivity of La2CuO4\rm La_2CuO_4 and La1.8Eu0.2CuO4\rm La_{1.8}Eu_{0.2}CuO_4 single-crystals which represent model systems for the two-dimensional spin-1/2 Heisenberg antiferromagnet on a square lattice. We find large anisotropies of the thermal conductivity, which are explained in terms of two-dimensional heat conduction by magnons within the CuO2_2 planes. Non-magnetic Zn substituted for Cu gradually suppresses this magnon thermal conductivity κmag\kappa_{\mathrm{mag}}. A semiclassical analysis of κmag\kappa_{\mathrm{mag}} is shown to yield a magnon mean free path which scales linearly with the reciprocal concentration of Zn-ions.Comment: 4 pages, 3 figure

    Magnetic heat conductivity in CaCu2O3\rm\bf CaCu_2O_3: linear temperature dependence

    Full text link
    We present experimental results for the thermal conductivity κ\kappa of the pseudo 2-leg ladder material CaCu2O3\rm CaCu_2O_3. The strong buckling of the ladder rungs renders this material a good approximation to a S=1/2S=1/2 Heisenberg-chain. Despite a strong suppression of the thermal conductivity of this material in all crystal directions due to inherent disorder, we find a dominant magnetic contribution κmag\kappa_\mathrm{mag} along the chain direction. κmag\kappa_\mathrm{mag} is \textit{linear} in temperature, resembling the low-temperature limit of the thermal Drude weight DthD_\mathrm{th} of the S=1/2S=1/2 Heisenberg chain. The comparison of κmag\kappa_\mathrm{mag} and DthD_\mathrm{th} yields a magnetic mean free path of lmag≈22±5l_\mathrm{mag}\approx 22 \pm 5 \AA, in good agreement with magnetic measurements.Comment: appears in PR

    Phase transitions in two-dimensional anisotropic quantum magnets

    Full text link
    We consider quantum Heisenberg ferro- and antiferromagnets on the square lattice with exchange anisotropy of easy-plane or easy-axis type. The thermodynamics and the critical behaviour of the models are studied by the pure-quantum self-consistent harmonic approximation, in order to evaluate the spin and anisotropy dependence of the critical temperatures. Results for thermodynamic quantities are reported and comparison with experimental and numerical simulation data is made. The obtained results allow us to draw a general picture of the subject and, in particular, to estimate the value of the critical temperature for any model belonging to the considered class.Comment: To be published on Eur. Phys. J.

    Giant spin canting in the S = 1/2 antiferromagnetic chain [CuPM(NO3)2(H2O)2]n observed by 13C-NMR

    Full text link
    We present a combined experimental and theoretical study on copper pyrimidine dinitrate [CuPM(NO3)2(H2O)2]n, a one-dimensional S = 1/2 antiferromagnet with alternating local symmetry. From the local susceptibility measured by NMR at the three inequivalent carbon sites in the pyrimidine molecule we deduce a giant spin canting, i.e., an additional staggered magnetization perpendicular to the applied external field at low temperatures. The magnitude of the transverse magnetization, the spin canting of 52 degrees at 10 K and 9.3 T and its temperature dependence are in excellent agreement with exact diagonalization calculations.Comment: 5 pages, 6 Postscript figure

    On the valence-bond solid phase of the crossed-chain quantum spin model

    Full text link
    Using a series expansion based on the flow-equation method we study the ground state energy and the elementary triplet excitations of a generalized model of crossed spin-1/2 chains starting from the limit of decoupled quadrumers. The triplet dispersion is shown to be very sensitive to the inter-quadrumer frustration, exhibiting a line of almost complete localization as well as lines of quantum phase transitions limiting the stability of the valence-bond solid phase. In the vicinity of the checkerboard-point a finite window of exchange couplings is found with a non-zero spin-gap, consistent with known results from exact diagonalization. The ground state energy is lower than that of the bare quadrumer case for all exchange couplings investigated. In the limiting situation of the fully frustrated checkerboard magnet our results agree with earlier series expansion studies.Comment: 8 pages, 7 figure

    Erfahrungen bei der Messung der Ergebnisqualität in der interventionellen Schmerztherapie

    Full text link
    BACKGROUND There is a growing interest in patient-related outcome measurement. In this field questionnaires on touch screens are becoming more common. This study was designed to identify problems in usability and feasibility of a web-based questionnaire. STUDY PARTICIPANTS AND METHODS Patients who underwent a lumbar infiltration were recruited in 5 centers and 50 patients participated of which half were older than 62 years. One third of the patients had basically no former experience with computers or touch screens. The outcome was assessed before treatment and during follow-up on a simple web-based patient questionnaire, the Activity Index. Results were presented graphically and discussed during consultation. Patients, nurses and doctors were asked for standardized feedback. RESULTS Of the patients 84% completed the questionnaire in up to 6 min. An adapted form of the system usability scale (SUS) achieved an acceptance score of 71.8%. Problems in handling occurred mostly in older patients (>65 years). The system was scored with 72.9% and 78.5% in efficiency and handling, respectively, by the nurses. The attending physicians rated the usefulness and comprehensibility of the graphical representation of the results on average as 83.3% and both were scored neutral to positive; however, an average of 11.6% rated some aspects of the report to be suboptimal. CONCLUSION This web-based questionnaire is the first of its kind to be evaluated in everyday practice of interventional pain therapy for lumbar back pain. The vast majority of the patients were able to efficiently complete the questionnaire. The questionnaire was highly acceptable to patients, nurses and doctors. We found some usability problems but mainly in the older age group
    • …
    corecore