13 research outputs found

    Influence of respiratory gating, image filtering, and animal positioning on high-resolution electrocardiography-gated murine cardiac single-photon emission computed tomography

    Get PDF
    Cardiac parameters obtained from single-photon emission computed tomographic (SPECT) images can be affected by respiratory motion, image filtering, and animal positioning. We investigated the influence of these factors on ultra-high-resolution murine myocardial perfusion SPECT. Five mice were injected with 99m technetium (99mTc)-tetrofosmin, and each was scanned in supine and prone positions in a U-SPECT-II scanner with respiratory and electrocardiographic (ECG) gating. ECG-gated SPECT images were created without applying respiratory motion correction or with two different respiratory motion correction strategies. The images were filtered with a range of three-dimensional gaussian kernels, after which end-diastolic volumes (EDVs), end-systolic volumes (ESVs), and left ventricular ejection fractions were calculated. No significant differences in the measured cardiac parameters were detected when any strategy to reduce or correct for respiratory motion was applied, whereas big differences (> 5%) in EDV and ESV were found with regard to different positioning of animals. A linear relationship (p < .001) was found between the EDV or ESV and the kernel size of the gaussian filter. In short, respiratory gating did not significantly affect the cardiac parameters of mice obtained with ultra-high-resolution SPECT, whereas the position of the animals and the image filters should be the same in a comparative study with multiple scans to avoid systematic differences in measured cardiac parameters

    Absolute quantitative total-body small-animal SPECT with focusing pinholes

    Get PDF
    Purpose: In pinhole SPECT, attenuation of the photon flux on trajectories between source and pinholes affects quantitative accuracy of reconstructed images. Previously we introduced iterative methods that compensate for image degrading effects of detector and pinhole blurring, pinhole sensitivity and scatter for multi-pinhole SPECT. The aim of this paper is (1) to investigate the accuracy of the Chang algorithm in rodents and (2) to present a practical Changbased method using body outline contours obtained with optical cameras. Methods: Here we develop and experimentally validate a practical method for attenuation correction based on a Chang first-order method. This approach has the advantage that it is employed after, and therefore independently from, iterative reconstruction. Therefore, no new system matrix has to be calculated for each specific animal. Experiments with phantoms and animals were performed with a highresolution focusing multi-pinhole SPECT system (USPECT-II, MILabs, The Netherlands). This SPECT system provides three additional optical camera images of the animal for each SPECT scan from which the animal contour can be estimated. Results: Phantom experiments demonstrated that an average quantification error of –18.7% was reduced to –1.7% when both window-based scatter correction and Chang correction based on the body outline from optical images were applied. Without scatter and attenuation correction, quantification errors in a sacrificed rat containing sources with known activity ranged from –23.6 to –9.3%. These errors were reduced to values between –6.3 and +4.3% (with an average magnitude of 2.1%) after applying scatter and Chang attenuation correction. Conclusion: We conclude that the modified Chang correction based on body contour combined with window-based scatter correction is a practical method for obtaining small-animal SPECT images with high quantitative accuracy.Radiation, Radionuclides and ReactorsApplied Science

    A Parallel Web Search Engine Based on Latent Semantic Indexing

    No full text
    this document. 1.1.2 Singular Value Decomposition The singular value decomposition of a matrix A 2 R A = UV : (1.2) The columns of matrix U = [u 1 ; : : : ; um ] 2 R are called the left singular vectors of A, and the columns of matrix V = [v 1 ; : : : ; v n ] 2 R are called the right singular vectors of A. The diagonal matrix = diag( 1 ; : : : ; s ) 2 R contains the singular values 1 2 : : : s 0 of A in order along its diagonal where s = min(m; n). Matrices U and V are orthogonal matrices (i.e. U U = I m and V V = I n ). Every matrix can be written in this form and the resulting SVD is unique up to the signs of the singular vectors u i and v

    A two-dimensional data distribution method for parallel sparse matrix-vector multiplication

    No full text
    Abstract. A new method is presented for distributing data in sparse matrix-vector multiplication. The method is two-dimensional, tries to minimize the true communication volume, and also tries to spread the computation and communication work evenly over the processors. The method starts with a recursive bipartitioning of the sparse matrix, each time splitting a rectangular matrix into two parts with a nearly equal number of nonzeros. The communication volume caused by the split is minimized. After the matrix partitioning, the input and output vectors are partitioned with the objective of minimizing the maximum communication volume per processor. Experimental results of our implementation, Mondriaan, for a set of sparse test matrices show a reduction in communication volume compared to one-dimensional methods, and in general a good balance in the communication work. Experimental timings of an actual parallel sparse matrix-vector multiplication on an SGI Origin 3800 computer show that a sufficiently large reduction in communication volume leads to savings in execution time

    A two-dimensional data distribution method for parallel sparse matrix-vector multiplication

    No full text
    Abstract. A new method is presented for distributing data in sparse matrix-vector multiplication. The method is two-dimensional, tries to minimise the true communication volume, and also tries to spread the computation and communication work evenly over the processors. The method starts with a recursive bipartitioning of the sparse matrix, each time splitting a rectangular matrix into two parts with a nearly equal number of nonzeros. The communication volume caused by the split is minimised. After the matrix partitioning, the input and output vectors are partitioned with the objective of minimising the maximum communication volume per processor. Experimental results of our implementation, Mondriaan, for a set of sparse test matrices show a reduction in communication compared to one-dimensional methods, and in general a good balance in the communication work

    VECTor: a preclinical imaging system for simultaneous submillimeter SPECT and PET

    No full text
    Today, PET and SPECT tracers cannot be imaged simultaneously at high resolutions but require 2 separate imaging systems. This paper introduces a Versatile Emission Computed Tomography system (VECTor) for radionuclides that enables simultaneous submillimeter imaging of single-photon and positron-emitting radiolabeled molecules. Ξ³-photons produced both by electron-positron annihilation and by single-photon emitters are projected onto the same detectors by means of a novel cylindric high-energy collimator containing 162 narrow pinholes that are grouped in clusters. This collimator is placed in an existing SPECT system (U-SPECT-II) with 3 large-field-of-view Ξ³-detectors. From the acquired projections, PET and SPECT images are obtained using statistical image reconstruction that corrects for energy-dependent system blurring. For PET tracers, the tomographic resolution obtained with a Jaszczak hot rod phantom was less than 0.8 mm, and 0.5-mm resolution images of SPECT tracers were acquired simultaneously. SPECT images were barely degraded by the simultaneous presence of a PET tracer, even when the activity concentration of the PET tracer exceeded that of the SPECT tracer by up to a factor of 2.5. Furthermore, we simultaneously acquired fully registered 3- and 4-dimensional multiple functional images from living mice that, in the past, could be obtained only sequentially. High-resolution complementary information about tissue function contained in SPECT and PET tracer distributions can now be obtained simultaneously using a fully integrated imaging device. These combined unique capabilities pave the way for new perspectives in imaging the biologic systems of rodent
    corecore