6 research outputs found

    The centromeric/nucleolar chromatin protein ZFP-37 may function to specify neuronal nuclear domains

    Get PDF
    Murine ZFP-37 is a member of the large family of C2H2 type zinc finger proteins. It is characterized by a truncated NH2-terminal Kruppel-associated box and is thought to play a role in transcriptional regulation. During development Zfp-37 mRNA is most abundant in the developing central nervous system, and in the adult mouse expression is restricted largely to testis and brain. Here we show that at the protein level ZFP-37 is detected readily in neurons of the adult central nervous system but hardly in testis. In brain ZFP-37 is associated with nucleoli and appears to contact heterochromatin. Mouse and human ZFP-37 have a basic histone H1-like linker domain, located between KRAB and zinc finger regions, which binds double-stranded DNA. Thus we suggest that ZFP-37 is a structural protein of the neuronal nucleus which plays a role in the maintenance of specialized chromatin domains

    Confocal endomicroscopy for evaluation of pancreatic cystic lesions: a systematic review and international Delphi consensus report

    Get PDF
    Background and study aims The aim of thi systematic review and consensus report is to standardize the practice of endoscopic ultrasound (EUS-guided needle-based confocal laser endomicroscopy (nCLE) for pancreatic cystic lesion (PCL) evaluation. Methods We performed an international, systematic, evidence-based review of the applications, outcomes, procedural processes, indications, training, and credentialing of EUS-nCLE in management of PCLs. Based on available clinical evidence, preliminary nCLE consensus statements (nCLE-CS) were developed by an international panel of 15 experts in pancreatic diseases. These statements were then voted and edited by using a modified Delphi approach. An a priori threshold of 80 % agreement was used to establish consensus for each statement. Results Sixteen nCLE-CS were discussed. Thirteen (81 %) nCLE-CS reached consensus addressing indications (noncommunication PCL meeting criteria for EUS-FNA or with prior non-diagnostic EUS-FNA), diagnostic outcomes (improved accuracy for mucinous PCLs and serous cystadeno mas with substantial interobserver agreement of image patterns), low incidence of adverse events (fluoresceinassociated and pancreatitis), procedural processes (nCLE duration, manipulation of needle with probe), and training (physician knowledge and competence). Conclusion Based on a high level of agreement pertaining to expert consensus statements, this report standardizes the practice of EUS-nCLE. EUS-nCLE should be systematically considered when EUS-FNA is indicated for PCL evaluation

    The mammalian gene function resource: The International Knockout Mouse Consortium

    Get PDF
    In 2007, the International Knockout Mouse Consortium (IKMC) made the ambitious promise to generate mutations in virtually every protein-coding gene of the mouse genome in a concerted worldwide action. Now, 5 years later, the IKMC members have developed highthroughput gene trapping and, in particular, gene-targeting pipelines and generated more than 17,400 mutant murine embryonic stem (ES) cell clones and more than 1,700 mutant mouse strains, most of them conditional. A common IKMC web portal (www.knockoutmouse.org) has been established, allowing easy access to this unparalleled biological resource. The IKMC materials considerably enhance functional gene annotation of the mammalian genome and will have a major impact on future biomedical research

    Ionic Liquid-Like Pharmaceutical Ingredients and Applications of Ionic Liquids in Medicinal Chemistry: Development, Status and Prospects

    No full text

    Evolution of genes and genomes on the Drosophila phylogeny

    No full text
    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    No full text
    Altres ajuts: Department of Health and Social Care (DHSC); Illumina; LifeArc; Medical Research Council (MRC); UKRI; Sepsis Research (the Fiona Elizabeth Agnew Trust); the Intensive Care Society, Wellcome Trust Senior Research Fellowship (223164/Z/21/Z); BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070, BBS/E/D/30002275); UKRI grants (MC_PC_20004, MC_PC_19025, MC_PC_1905, MRNO2995X/1); UK Research and Innovation (MC_PC_20029); the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z); the Edinburgh Clinical Academic Track (ECAT) programme; the National Institute for Health Research, the Wellcome Trust; the MRC; Cancer Research UK; the DHSC; NHS England; the Smilow family; the National Center for Advancing Translational Sciences of the National Institutes of Health (CTSA award number UL1TR001878); the Perelman School of Medicine at the University of Pennsylvania; National Institute on Aging (NIA U01AG009740); the National Institute on Aging (RC2 AG036495, RC4 AG039029); the Common Fund of the Office of the Director of the National Institutes of Health; NCI; NHGRI; NHLBI; NIDA; NIMH; NINDS.Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care or hospitalization after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore